Blog

Archive for the ‘bioengineering’ category: Page 36

Sep 8, 2023

Engineered E. coli to generate electricity from wastewater

Posted by in categories: bioengineering, biological, genetics

The organism fared better at converting organic waste to electricity than even some famous and exotic electricity producing microbes.

Scientists at the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland have successfully engineered E.coli.

Escherichia coli, commonly known as E.coli, is a rod-shaped bacterium commonly found in the lower gut of organisms. However, it has become a favorite of microbial researchers worldwide for the ease with which its genetic structure can be manipulated. It has, therefore, become an indispensable part of research and industrial projects.

Sep 7, 2023

Researchers develop a protocol to extend the life of quantum coherence

Posted by in categories: bioengineering, computing, quantum physics

For years, researchers have tried various ways to coax quantum bits—or qubits, the basic building blocks of quantum computers—to remain in their quantum state for ever-longer times, a key step in creating devices like quantum sensors, gyroscopes, and memories.

A team of physicists from MIT have taken an important step forward in that quest, and to do it, they borrowed a concept from an unlikely source—noise-cancelling headphones.

Led by Ju Li, the Battelle Energy Alliance Professor in Nuclear Engineering and professor of materials science and engineering, and Paola Cappellaro, the Ford Professor of Engineering in the Department of Nuclear Science and Engineering and Research Laboratory of Electronics, and a professor of physics, the team described a method to achieve a 20-fold increase in the coherence times for nuclear-spin qubits.

Sep 4, 2023

Artificial Intelligence: Transforming Healthcare, Cybersecurity, and Communications

Posted by in categories: augmented reality, bioengineering, cybercrime/malcode, economics, genetics, information science, robotics/AI, sustainability

Please see my new FORBES article:

Thanks and please follow me on Linkedin for more tech and cybersecurity insights.


More remarkably, the advent of artificial intelligence (AI) and machine learning-based computers in the next century may alter how we relate to ourselves.

Continue reading “Artificial Intelligence: Transforming Healthcare, Cybersecurity, and Communications” »

Sep 4, 2023

Molecular assembler

Posted by in categories: bioengineering, biological, chemistry, food, nanotechnology, particle physics, robotics/AI

A molecular assembler, as defined by K. Eric Drexler, is a “proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision”. A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term “molecular assembler” usually refers to theoretical human-made devices.

Beginning in 2007, the British Engineering and Physical Sciences Research Council has funded development of ribosome-like molecular assemblers. Clearly, molecular assemblers are possible in this limited sense. A technology roadmap project, led by the Battelle Memorial Institute and hosted by several U.S. National Laboratories has explored a range of atomically precise fabrication technologies, including both early-generation and longer-term prospects for programmable molecular assembly; the report was released in December, 2007. In 2008 the Engineering and Physical Sciences Research Council provided funding of 1.5 million pounds over six years for research working towards mechanized mechanosynthesis, in partnership with the Institute for Molecular Manufacturing, amongst others. Likewise, the term “molecular assembler” has been used in science fiction and popular culture to refer to a wide range of fantastic atom-manipulating nanomachines, many of which may be physically impossible in reality. Much of the controversy regarding “molecular assemblers” results from the confusion in the use of the name for both technical concepts and popular fantasies. In 1992, Drexler introduced the related but better-understood term “molecular manufacturing”, which he defined as the programmed “chemical synthesis of complex structures by mechanically positioning reactive molecules, not by manipulating individual atoms”.This article mostly discusses “molecular assemblers” in the popular sense. These include hypothetical machines that manipulate individual atoms and machines with organism-like self-replicating abilities, mobility, ability to consume food, and so forth. These are quite different from devices that merely (as defined above) “guide chemical reactions by positioning reactive molecules with atomic precision”.
Because synthetic molecular assemblers have never been constructed and because of the confusion regarding the meaning of the term, there has been much controversy as to whether “molecular assemblers” are possible or simply science fiction. Confusion and controversy also stem from their classification as nanotechnology, which is an active area of laboratory research which has already been applied to the production of real products; however, there had been, until recently, no research efforts into the actual construction of “molecular assemblers”.
Nonetheless, a 2013 paper by David Leigh’s group, published in the journal Science, details a new method of synthesizing a peptide in a sequence-specific manner by using an artificial molecular machine that is guided by a molecular strand. This functions in the same way as a ribosome building proteins by assembling amino acids according to a messenger RNA blueprint. The structure of the machine is based on a rotaxane, which is a molecular ring sliding along a molecular axle. The ring carries a thiolate group which removes amino acids in sequence from the axle, transferring them to a peptide assembly site. In 2018, the same group published a more advanced version of this concept in which the molecular ring shuttles along a polymeric track to assemble an oligopeptide that can fold into a α-helix that can perform the enantioselective epoxidation of a chalcone derivative (in a way reminiscent to the ribosome assembling an enzyme). In another paper published in Science in March 2015, chemists at the University of Illinois report a platform that automates the synthesis of 14 classes of small molecules, with thousands of compatible building blocks. In 2017 David Leigh’s group reported a molecular robot that could be programmed to construct any one of four different stereoisomers of a molecular product by using a nanomechanical robotic arm to move a molecular substrate between different reactive sites of an artificial molecular machine. An accompanying News and Views article, titled ‘A molecular assembler’, outlined the operation of the molecular robot as effectively a prototypical molecular assembler.

Continue reading “Molecular assembler” »

Sep 3, 2023

The functional connectome across temporal scales

Posted by in categories: bioengineering, chemistry, neuroscience

Sepideh Sadaghiani, Associate Professor of Psychology, Neuroscience, & Bioengineering at Illinois, lectured on “The functional connectome across temporal scales” at 4:00 pm in 2,269 Beckman Institute and on Zoom. Introduction by Ryan Miller, MBM trainee and PhD candidate in Chemical & Biomolecular Engineering.

For more information on the lecture and Dr. Sadaghiani: https://publish.illinois.edu/minibrain/2022/07/26/sepideh-sa…s-lecture/

Continue reading “The functional connectome across temporal scales” »

Sep 2, 2023

What is The Field of Diverse Intelligence? Hacking the Spectrum of Mind & Matter | Michael Levin

Posted by in categories: bioengineering, biotech/medical, computing, information science, mathematics

Michael Levin is a Distinguished Professor in the Biology department at Tufts University. He holds the Vannevar Bush endowed Chair and serves as director of the Allen Discovery Center at Tufts and the Tufts Center for Regenerative and Developmental Biology. To explore the algorithms by which the biological world implemented complex adaptive behavior, he got dual B.S. degrees, in CS and in Biology and then received a PhD from Harvard University. He did post-doctoral training at Harvard Medical School, where he began to uncover a new bioelectric language by which cells coordinate their activity during embryogenesis. The Levin Lab works at the intersection of developmental biology, artificial life, bioengineering, synthetic morphology, and cognitive science.

✅EPISODE LINKS:
👉Round 1: https://youtu.be/v6gp-ORTBlU
👉Mike’s Website: https://drmichaellevin.org/
👉New Website: https://thoughtforms.life.
👉Mike’s Twitter: https://twitter.com/drmichaellevin.
👉Mike’s YouTube: https://youtube.com/@drmichaellevin.
👉Mike’s Publications: https://tinyurl.com/yc388vvk.
👉The Well: https://www.youtube.com/watch?v=0a3xg4M9Oa8 & https://youtu.be/XHMyKOpiYjk.
👉Aeon Essays: https://aeon.co/users/michael-levin.

Continue reading “What is The Field of Diverse Intelligence? Hacking the Spectrum of Mind & Matter | Michael Levin” »

Sep 2, 2023

-Electricity of Life💡: Wonders of Bioelectricity and Regenerative Biology Prof Michael Levin

Posted by in categories: bioengineering, biotech/medical, life extension

Welcome to another exciting episode of our podcast series, where we dive deep into the world of science and innovation! In today’s episode, we have the privilege of interviewing Prof. Michael Levin, a renowned researcher in the fields of bioelectricity, regenerative biology, and biophysics.

Prof. Levin is the director of the Allen Discovery Center at Tufts University and has been making groundbreaking discoveries that are revolutionizing the field of regenerative medicine. His research focuses on understanding the electrical communication within and between cells, and how this communication can be harnessed for tissue repair and regeneration.

Continue reading “-Electricity of Life💡: Wonders of Bioelectricity and Regenerative Biology Prof Michael Levin” »

Sep 1, 2023

Sickle cell patient’s success with gene editing raises hopes and questions

Posted by in categories: bioengineering, biotech/medical, genetics

Throughout Gray’s life before she got the treatment, the deformed, sickle-shaped red blood cells caused by the genetic disorder would regularly incapacitate her with intense, unpredictable attacks of pain. Those crises would send Gray rushing to the hospital for pain medication and blood transfusions. She could barely get out of bed many days; when she became a mom, she struggled to care for her four children and couldn’t finish school or keep a job.

But then she received the treatment on July 2, 2019. Doctors removed some of her bone marrow cells, genetically modified them with CRISPR and infused billions of the modified cells back into her body. The genetic modification was designed to make the cells produce fetal hemoglobin, in the hopes the cells would compensate for the defective hemoglobin that causes the disease.


A Mississippi woman’s life has been transformed by a treatment for sickle cell disease with the gene-editing technique CRISPR. All her symptoms from a disease once thought incurable have disappeared.

Continue reading “Sickle cell patient’s success with gene editing raises hopes and questions” »

Aug 31, 2023

GENETIC ENGINEERING & BIOTECHNOLOGY in the Future (2077 & Beyond)

Posted by in categories: bioengineering, bioprinting, biotech/medical, chemistry, cyborgs, food, genetics, robotics/AI, transhumanism

What happens when humans begin combining biology with technology, harnessing the power to recode life itself.

What does the future of biotechnology look like? How will humans program biology to create organ farm technology and bio-robots. And what happens when companies begin investing in advanced bio-printing, artificial wombs, and cybernetic prosthetic limbs.

Continue reading “GENETIC ENGINEERING & BIOTECHNOLOGY in the Future (2077 & Beyond)” »

Aug 29, 2023

Base Editing Beats Other Genome Editing Strategies for Treating Sickle Cell Disease

Posted by in categories: bioengineering, biotech/medical, genetics

The findings suggest that adenosine base editing raised the expression of fetal hemoglobin to higher, more stable, and more uniform levels than other genome editing technologies that use CRISPR/Cas9 nuclease in human hematopoietic stem cells.


“Ultimately, we showed that not all genetic approaches are equal,” said Jonathan Yen, PhD, genome engineering group director at St. Jude Children’s Research Hospital. “Base editors may be able to create more potent and precise edits than other technologies. But we must do more safety testing and optimization.”

SCD and beta-thalassemia are blood disorders caused by mutations in the gene encoding hemoglobin affecting millions of people. Restoring gene expression of an alternative hemoglobin subunit active in a developing fetus has previously shown therapeutic benefit in SCD and beta-thalassemia patients. The researchers wanted to find and optimize genomic technology to edit the fetal hemoglobin gene.

Continue reading “Base Editing Beats Other Genome Editing Strategies for Treating Sickle Cell Disease” »

Page 36 of 222First3334353637383940Last