Blog

Archive for the ‘bioengineering’ category: Page 172

Jul 29, 2017

How DIY biohacking will change society

Posted by in categories: bioengineering, biotech/medical, education, genetics

Imagine a scientist experimenting on her own genes from her kitchen, rather than going to a physician, because she wants to cure a medical ailment. Another “do-it-yourself” scientist across the country extracts DNA samples from plants to figure out how they affect its growth.

DIY biohacking is a relatively new phenomenon in which scientists (typically those with an interest in genetic engineering) want to take biology experimentation outside of the lab or classroom. Currently, it’s mostly used for medical purposes, but the future of DIY biohacking could look a lot different. So we asked four experts a simple question: By the year 2040, what will be the gene most edited via DIY biohacking?

Read more

Jul 29, 2017

Edited Humans, Creating A Universe With A Supercomputer & All Is One At The Same Time

Posted by in categories: bioengineering, biotech/medical, supercomputing

Welcome to Mr Futurist’s first weekly podcast where I discuss what going on in emerging science and technology. Scientists have successfully edited the first human embryo in the U.S. using CRISPR. CRISPR is a gene editing technique that can modify any region of the genome of any species with high precision accuracy. Modifying a species to have certain characteristics or traits. If you’re curious as to what CRISPR is, I have added a link below to an excellent video from Futurist that explains what CRISPR is and what it can be used for, all in 60 seconds. It’s worth a minute of your time.

Read more

Jul 28, 2017

Two Babies Have Been Cancer-Free After Receiving Treatment Created With Gene Editing

Posted by in categories: bioengineering, biotech/medical, health

Cancer continues to be one of the major diseases that plagues humanity. Around the world, approximately 1 in 6 deaths is due to cancer, according to the World Health Organisation (WHO).

The prevalence of cancer is due, in part, to the absence of a universal cure for all forms of the disease. While various treatments are available, each type of cancer generally requires specific treatment.

A new method developed by doctors at the Great Ormond Street Hospital in London presents a hopeful solution. The team has successfully tested their method on two infants with an aggressive form of leukaemia.

Continue reading “Two Babies Have Been Cancer-Free After Receiving Treatment Created With Gene Editing” »

Jul 28, 2017

Human embryo gene editing has taken place in US, claims report

Posted by in categories: bioengineering, biotech/medical

A US team is said to have carried out the most extensive study of editing human embryos yet, but the full results have not yet been released.

Read more

Jul 28, 2017

Scientists Have Used CRISPR to Edit a Human Embryo in The US For The First Time

Posted by in categories: bioengineering, biotech/medical, genetics

Researchers in Portland, Oregon have, for the first time, edited a human embryo in the US.

This work adds to the promise of CRISPR, and it stands as an important step toward the birth of the first genetically modified humans.

Continue reading “Scientists Have Used CRISPR to Edit a Human Embryo in The US For The First Time” »

Jul 28, 2017

Why the super-rich are ploughing billions into the booming ‘immortality industry’

Posted by in categories: bioengineering, biotech/medical, computing, life extension, mapping, neuroscience

Imagine a world in which you’re 90 years old and nowhere near middle-aged. An app on your phone has hacked your DNA code, so you know exactly when to go to the doctor to receive gene therapy to prevent all the diseases you don’t yet have. A microchip in your skin sends out a signal if you’re at risk of developing a wrinkle — so you step out of the sun and hotfoot it to your dermatologist. Every evening you sync your brain-mapping device with The Cloud, so even if you were caught up in a fatal accident you’d still be able to cheat death — every detail of your life would simply be downloaded to one of the perfect silicon versions you’d had made of yourself, ensuring you last until at least your 1,000th birthday.

This may sound like science fiction but it could be your fate — provided you can afford it. If current research develops into medicine, in the London of the future the super-rich won’t simply be able to buy the best things in life, they’ll be able to buy life itself by transforming themselves into a bio-engineered super-race, capable of living, if not forever, then for vastly longer than the current UK life expectancy of 81 years.

The science of turning back the clock has never been more advanced. In Boston, a drug capable of reversing half a lifetime of ageing in mice is about to be tested on humans in a medical trial monitored by NASA. NMN is a compound found naturally in broccoli which boosts levels of NAD, a protein involved in energy production that depletes as we get older. Professor David Sinclair, who headed up the initial research at Australia’s University of New South Wales, doses himself with 500mg daily, and claims that he has already become more youthful. According to blood tests analysing the state of the 48-year-old’s cells, prior to taking the pills Sinclair was in the same physical shape as a 57-year-old, but now he’s ‘31.4’.

Continue reading “Why the super-rich are ploughing billions into the booming ‘immortality industry’” »

Jul 26, 2017

Living computers: RNA circuits transform cells into nanodevices

Posted by in categories: bioengineering, biological, computing

The interdisciplinary nexus of biology and engineering, known as synthetic biology, is growing at a rapid pace, opening new vistas that could scarcely be imagined a short time ago.

Read more

Jul 26, 2017

DARPA reveal project to develop gene editing system

Posted by in categories: bioengineering, biotech/medical

DARPA’s Safe Genes program plans to invest $65 million in seven teams that will collect data and develop gene editing tools to support bio-innovation and combat bio-threats such as invasive species.

Read more

Jul 26, 2017

New Study Suggests Previous Concerns about CRISPR Safety are Questionable

Posted by in categories: bioengineering, biotech/medical, food, genetics, life extension

Gene editing aims to make precise changes to the target DNA whilst avoiding altering other parts of the DNA. The objective of this is to remove undesirable genetic traits and introduce desirable changes in both plants and animals. For example, it could be used to make crops more drought resistant, prevent or cure inherited genetic disorders or even treat age-related diseases.

As some of you may recall, back in May a study was published which claimed that the groundbreaking gene editing technique CRISPR caused thousands of off target and potentially dangerous mutations[1]. The authors of the paper called for regulators to investigate the safety of the technique, a move that could potentially set back research years if not decades.

This publication has been widely blasted by the research community due to serious questions about the study design being raised. One of the problems with this original paper was that it involved only three mice, this is an extremely poor number to make the kind of conclusions the paper did. There have been calls for the paper to be withdrawn and critical responses to the study.

Read more

Jul 20, 2017

Building the Safe Genes Toolkit

Posted by in categories: bioengineering, biotech/medical, genetics, health, security

DARPA created the Safe Genes program to gain a fundamental understanding of how gene editing technologies function; devise means to safely, responsibly, and predictably harness them for beneficial ends; and address potential health and security concerns related to their accidental or intentional misuse. Today, DARPA announced awards to seven teams that will pursue that mission, led by: The Broad Institute of MIT and Harvard; Harvard Medical School; Massachusetts General Hospital; Massachusetts Institute of Technology; North Carolina State University; University of California, Berkeley; and University of California, Riverside. DARPA plans to invest $65 million in Safe Genes over the next four years as these teams work to collect empirical data and develop a suite of versatile tools that can be applied independently or in combination to support bio-innovation and combat bio-threats.

Gene editing technologies have captured increasing attention from healthcare professionals, policymakers, and community leaders in recent years for their potential to selectively disable cancerous cells in the body, control populations of disease-spreading mosquitos, and defend native flora and fauna against invasive species, among other uses. The potential national security applications and implications of these technologies are equally profound, including protection of troops against infectious disease, mitigation of threats posed by irresponsible or nefarious use of biological technologies, and enhanced development of new resources derived from synthetic biology, such as novel chemicals, materials, and coatings with useful, unique properties.

Achieving such ambitious goals, however, will require more complete knowledge about how gene editors, and derivative technologies including gene drives, function at various physical and temporal scales under different environmental conditions, across multiple generations of an organism. In parallel, demonstrating the ability to precisely control gene edits, turning them on and off under certain conditions or even reversing their effects entirely, will be paramount to translation of these tools to practical applications. By establishing empirical foundations and removing lingering unknowns through laboratory-based demonstrations, the Safe Genes teams will work to substantially minimize the risks inherent in such powerful tools.

Read more