Blog

Archive for the ‘bioengineering’ category: Page 100

Oct 15, 2020

Harvard Fellow: Next Pandemic Could Be Engineered by Terrorists

Posted by in categories: bioengineering, biotech/medical

Experts say that COVID-19 almost certainly arose naturally, rather than being bioengineered.

But that doesn’t mean the next pandemic won’t involve a deadly virus designed by an adversary, as distinguished fellow at Harvard Law Vivek Wadhwa argues in a new essay for Foreign Policy.

“It is now too late to stop the global spread of these technologies — the genie is out of the bottle,” he wrote. “We must treat the coronavirus pandemic as a full dress rehearsal of what is to come — unfortunately, that includes not only viruses that erupt from nature, but also those that will be deliberately engineered by humans.”

Oct 8, 2020

Engineers create nanoparticles that deliver gene-editing tools to specific tissues and organs

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology, neuroscience

One of the most remarkable recent advances in biomedical research has been the development of highly targeted gene-editing methods such as CRISPR that can add, remove, or change a gene within a cell with great precision. The method is already being tested or used for the treatment of patients with sickle cell anemia and cancers such as multiple myeloma and liposarcoma, and today, its creators Emmanuelle Charpentier and Jennifer Doudna received the Nobel Prize in chemistry.

While is remarkably precise in finding and altering genes, there is still no way to target treatment to specific locations in the body. The treatments tested so far involve removing or immune system T cells from the body to modify them, and then infusing them back into a patient to repopulate the bloodstream or reconstitute an immune response—an expensive and time-consuming process.

Building on the accomplishments of Charpentier and Doudna, Tufts researchers have for the first time devised a way to directly deliver gene-editing packages efficiently across the and into specific regions of the brain, into immune system cells, or to specific tissues and organs in mouse models. These applications could open up an entirely new line of strategy in the treatment of neurological conditions, as well as cancer, infectious disease, and autoimmune diseases.

Oct 8, 2020

Some Fish Can Regenerate Their Eyes. Turns Out, Mammals Have Those Genes Too

Posted by in categories: bioengineering, biotech/medical, life extension

Perhaps in the future, gene editing may allow retinal regeneration in humans to reverse age-related vision deterioration.


Damage to the retina is the leading cause of blindness in humans, affecting millions of people around the world. Unfortunately, the retina is one of the few tissues we humans can’t grow back.

Unlike us, other animals such as zebrafish are able to regenerate this tissue that’s so crucial to our power of sight. We share 70 percent of our genes with these tiny little zebrafish, and scientists have just discovered some of the shared genes include the ones that grant zebrafish the ability to grow back their retinas.

Continue reading “Some Fish Can Regenerate Their Eyes. Turns Out, Mammals Have Those Genes Too” »

Oct 7, 2020

Volcanic eruption turned man’s brain into glass, ‘froze’ brain cells 2,000 years ago, scientists find

Posted by in categories: bioengineering, biotech/medical, life extension, neuroscience

Although it’s clearly NOT the approach taken for ultracold vitrification of patients undergoing life extension cryonization. (ULTRA🥶COLD being the exact opposite of ULTRA-BLOODY-H🥵T, obviously!)

Still, given the vast number of scientific and engineering discoveries and creations born on the backs of unexpected results, accidental discoveries, and outright screw up, it might have very useful data that has practical applications that would never otherwise have even been considered.


Italian scientists found intact brain cells in a man who was killed during the eruption of Mount Vesuvius in 79 AD.

Oct 3, 2020

Cindy Gallop

Posted by in categories: bioengineering, life extension, sex

Founder of MakeLoveNotPorn, and internationally famous advertising executive and public speaker, talks of Sex-Tech, a burgeoning trillion dollar industry, on the ideaXme show — #Ideaxme #MoveTheHumanStoryForward #CindyGallop #MakeLoveNotPorn #SexTech #Sexuality #SociallyAcceptableSex #Pornography #Porn #Orgasm #ErectileDysfunction #Biohacking #Viagra #Wellness #Health #Longevity #DisruptAging #Aarp #IfWeRanTheWorld #BartleBogleHegarty #Advertising #PublicRelations #TEDTalk #IraPastor #Bioquark #Regenerage AARP Disrupt Aging.

Oct 3, 2020

Synthetic biology brings the hard science of engineering to the basics of life

Posted by in categories: bioengineering, biological, computing, science

Synthetic biology startups raised some $3 billion through the first half of 2020, up from $1.9 billion for all of 2019, as the field brings the science of engineering to the art of life.

The big picture: Synthetic biologists are gradually learning how to program the code of life the way that computer experts have learned to program machines. If they can succeed — and if the public accepts their work — synthetic biology stands to fundamentally transform how we live.

What’s happening: SynBioBeta, synthetic biology’s major commercial conference, launched on Tuesday, virtually bringing together thousands of scientists, entrepreneurs, VCs and more to discuss the state of the field.

Sep 29, 2020

New Genetic Systems Created by Biologists to Neutralize Gene Drives

Posted by in categories: bioengineering, biotech/medical, genetics

Two active genetics strategies help address concerns about gene-drive releases into the wild.

In the past decade, researchers have engineered an array of new tools that control the balance of genetic inheritance. Based on CRISPR technology, such gene drives are poised to move from the laboratory into the wild where they are being engineered to suppress devastating diseases such as mosquito-borne malaria, dengue, Zika, chikungunya, yellow fever and West Nile. Gene drives carry the power to immunize mosquitoes against malarial parasites, or act as genetic insecticides that reduce mosquito populations.

Although the newest gene drives have been proven to spread efficiently as designed in laboratory settings, concerns have been raised regarding the safety of releasing such systems into wild populations. Questions have emerged about the predictability and controllability of gene drives and whether, once let loose, they can be recalled in the field if they spread beyond their intended application region.

Sep 27, 2020

Harvard Professor Wants to Slow Down & Reverse Aging: David Sinclair’s Approach For a Longer Life

Posted by in categories: bioengineering, biotech/medical, genetics, information science, life extension, robotics/AI

David Sinclair wants to slow down and ultimately reverse aging. Sinclair sees aging as a disease and he is convinced aging is caused by epigenetic changes, abnormalities that occur when the body’s cells process extra or missing pieces of DNA. This results in the loss of the information that keeps our cells healthy. This information also tells the cells which genes to read. David Sinclair’s book: “Lifespan, why we age and why we don’t have to”, he describes the results of his research, theories and scientific philosophy as well as the potential consequences of the significant progress in genetic technologies.

At present, researchers are only just beginning to understand the biological basis of aging even in relatively simple and short-lived organisms such as yeast. Sinclair however, makes a convincing argument for why the life-extension technologies will eventually offer possibilities of life prolongation using genetic engineering.

Continue reading “Harvard Professor Wants to Slow Down & Reverse Aging: David Sinclair’s Approach For a Longer Life” »

Sep 18, 2020

Engineering Living Organisms Could Be the World’s Biggest Industry

Posted by in categories: bioengineering, biotech/medical

Wouldn’t it be better to have a creature, something furry and warm that had the ability to produce perfect breast milk? A non-sentient, biological organism that has been engineered to produce milk nutritionally equivalent to mother’s milk? A milk Tribble? That type of technology would be awesome for babies.

Karl Schmieder: Is there a biological technology that you wished you had?

Andrew Hessel: I want the enzymatic DNA synthesizer that will be at least a thousand times better than what we have today. Next-generation sequencing technology massively accelerated our ability to read DNA. An enzymatic DNA synthesizer could be the equivalent accelerator for engineered biology. If you can synthesize DNA faster, then you can conduct more experiments and learn faster. That’s what I’d like to see. More people programming life.

Sep 18, 2020

Biologists create new genetic systems to neutralize gene drives

Posted by in categories: bioengineering, biotech/medical, genetics

In the past decade, researchers have engineered an array of new tools that control the balance of genetic inheritance. Based on CRISPR technology, such gene drives are poised to move from the laboratory into the wild where they are being engineered to suppress devastating diseases such as mosquito-borne malaria, dengue, Zika, chikungunya, yellow fever and West Nile. Gene drives carry the power to immunize mosquitoes against malarial parasites, or act as genetic insecticides that reduce mosquito populations.

Although the newest gene drives have been proven to spread efficiently as designed in laboratory settings, concerns have been raised regarding the safety of releasing such systems into wild populations. Questions have emerged about the predictability and controllability of gene drives and whether, once let loose, they can be recalled in the field if they spread beyond their intended application region.

Now, scientists at the University of California San Diego and their colleagues have developed two new active genetic systems that address such risks by halting or eliminating gene drives in the wild. On Sept.18, 2020 in the journal Molecular Cell, research led by Xiang-Ru Xu, Emily Bulger and Valentino Gantz in the Division of Biological Sciences offers two new solutions based on elements developed in the common fruit fly.

Page 100 of 216First979899100101102103104Last