Blog

Archive for the ‘3D printing’ category: Page 6

Jun 27, 2024

Tiny Titan: MIT’s Revolutionary Coin-Sized 3D Printer Fits in Your Pocket

Posted by in categories: 3D printing, biotech/medical, computing, engineering

Researchers from MIT and the University of Texas have developed a prototype for a handheld, chip-based 3D printer using a photonic chip that emits beams of light to cure resin into solid objects. This innovative technology could revolutionize the production of customized, low-cost objects on-the-go and has potential applications in medical and engineering fields.

Portable 3D Printing Technology

Imagine a portable 3D printer you could hold in the palm of your hand. The tiny device could enable a user to rapidly create customized, low-cost objects on the go, like a fastener to repair a wobbly bicycle wheel or a component for a critical medical operation.

Jun 24, 2024

No assembly required: Innovative 3D printing method streamlines multi-materials manufacturing

Posted by in categories: 3D printing, materials

University of Missouri researchers have developed a way to create complex devices with multiple materials—including plastics, metals and semiconductors—all with a single machine.

The research, which was recently published in Nature Communications, outlines a novel 3D printing and laser process to manufacture multi-material, multi-layered sensors, circuit boards and even textiles with electronic components.

It’s called the Freeform Multi-material Assembly Process, and it promises to revolutionize the fabrication of new products.

Jun 18, 2024

Producing Crazy Textures by 3D Printing Clay With Custom Rotating Nozzles

Posted by in category: 3D printing

Polish artist Piotr Wasniowski is a bit of a mad scientist. An expert in 3D printed clay, Wasniowski’s tool of choice is a “Gaia Multitool Polish clay 3D printer with cheap de-airing clay extruder with rotational nozzle,” for which he fabricates his own nozzles.

These variants allow him to print a variety of crazy textures.

Jun 16, 2024

New 3D printing technique integrates electronics into microchannels to create flexible, stretchable microfluidic devices

Posted by in categories: 3D printing, materials

The transition from traditional 2D to 3D microfluidic structures is a significant advancement in microfluidics, offering benefits in scientific and industrial applications. These 3D systems improve throughput through parallel operation, and soft elastomeric networks, when filled with conductive materials like liquid metal, allowing for the integration of microfluidics and electronics.

Jun 10, 2024

Elon Musk Speaks: All Starship Tiles will be Replaced After Flight 4 Issues!

Posted by in categories: 3D printing, Elon Musk, space travel

Elon revealed details about Starship Flight 4 outcome, Flight 5, and beyond during a gaming livestream in X.

Video Credit: Elon Musk.

Continue reading “Elon Musk Speaks: All Starship Tiles will be Replaced After Flight 4 Issues!” »

Jun 8, 2024

Virgin Galactic Launches Crewed Galactic 07 Mission

Posted by in categories: 3D printing, robotics/AI, space

Virgin Galactic is using its SpaceShipTwo to launch the final commercial flight of VSS Unity. This is the 17th flight of the VSS Unity, before the company plans to upgrade the vehicle.

The commercial crew on this mission is composed of a researcher affiliated with Axiom Space, two private Americans, and a private Italian. The Virgin Galactic crew on Unity will be Commander Nicola Pecile and pilot Jameel Janjua.

Continue reading “Virgin Galactic Launches Crewed Galactic 07 Mission” »

May 10, 2024

Blurred Light Harnessed to 3D Print High Quality Lenses

Posted by in category: 3D printing

New 3D printing method produces commercial grade microlenses with smooth surfaces, which could advance optical device design.

Researchers in Canada have developed a new 3D printing method called blurred tomography that can rapidly produce microlenses with commercial-level optical quality. The new method may make it easier and faster to design and fabricate a variety of optical devices.

“We purposely added optical blurring to the beams of light used for this 3D printing method to manufacture precision optical components,” said Daniel Webber from the National Research Council of Canada. “This enables production of optically smooth surfaces.”

May 1, 2024

Marriage of synthetic biology and 3D printing produces programmable living materials

Posted by in categories: 3D printing, bioengineering, biological, genetics, sustainability

Scientists are harnessing cells to make new types of materials that can grow, repair themselves and even respond to their environment. These solid “engineered living materials” are made by embedding cells in an inanimate matrix that’s formed in a desired shape. Now, researchers report in ACS Central Science that they have 3D printed a bioink containing plant cells that were then genetically modified, producing programmable materials. Applications could someday include biomanufacturing and sustainable construction.

Apr 28, 2024

Cheap, climate-friendly dream homes: New AI architect and 3D printing transform construction industry

Posted by in categories: 3D printing, biological, climatology, habitats, robotics/AI

When facing a predator, single cells sometimes unite to defend themselves, paving the way for more complex multicellular life forms to evolve.

Apr 26, 2024

This 3D-Printer can figure out How to Print with an Unknown Material

Posted by in categories: 3D printing, sustainability

Researchers developed a 3D printer that can automatically determine the printing parameters of an unknown material. This could help engineers use emerging renewable or recycled materials that have fluctuating properties, which makes them difficult to print with.

While 3D printing has exploded in popularity, many of the plastic materials these printers use to create objects cannot be easily recycled. While new sustainable materials are emerging for use in 3D printing, they remain difficult to adopt because 3D printer settings need to be adjusted for each material, a process generally done by hand.

To print a new material from scratch, one must typically set up to 100 parameters in software that controls how the printer will extrude the material as it fabricates an object. Commonly used materials, like mass-manufactured polymers, have established sets of parameters that were perfected through tedious, trial-and-error processes.

Page 6 of 142First345678910Last