Blog

Archive for the ‘3D printing’ category: Page 125

Sep 19, 2015

World’s largest delta-style 3D printer can print nearly zero-cost housing out of mud

Posted by in categories: 3D printing, sustainability

The future of affordable (and sustainable) housing may lie with 3D printing. The World’s Advanced Saving Project (WASP) will soon unveil the world’s largest delta-style 3D printer that can build full-size buildings out of mud and clay for nearly zero cost. The massive 12-meter-tall (40 feet) BigDelta printer will make its official debut and show off its eco-friendly printing prowess tomorrow at “Reality of dream,” a three-day event in Massa Lombarda, Italy.

Read more

Sep 17, 2015

System can convert MRI heart scans into 3D-printed, physical models in a few hours

Posted by in categories: 3D printing, biotech/medical, computing, engineering

Researchers at MIT and Boston Children’s Hospital have developed a system that can take MRI scans of a patient’s heart and, in a matter of hours, convert them into a tangible, physical model that surgeons can use to plan surgery.

The models could provide a more intuitive way for surgeons to assess and prepare for the anatomical idiosyncrasies of individual patients. “Our collaborators are convinced that this will make a difference,” says Polina Golland, a professor of and computer science at MIT, who led the project. “The phrase I heard is that ‘surgeons see with their hands,’ that the perception is in the touch.”

This fall, seven cardiac surgeons at Boston Children’s Hospital will participate in a study intended to evaluate the models’ usefulness.

Read more

Sep 13, 2015

3D Printed Solar Cells Could Provide 1.3 Billion People with Electricity

Posted by in categories: 3D printing, energy, solar power, sustainability

Solar power has been gaining more and more popularity worldwide since the efficiency of solar panels has significantly increased during the recent years, along with the dramatic decrease in the costs. However, its popularity is not only due its affordability to a wider audience but also to the growing awareness about the benefits of clean sources of energy. Yet, the costs of transportation and production often make it extremely difficult to implement solar technology in developing countries. Printed solar cells could offer a solution to this problem.

Thanks to the advances in printed solar cell technology during the past few years, its energy efficiency has increased from 3% to 20%.

Its success is due to its cost-effectiveness and simplicity. A 10×10 cm solar cell film is enough to generate as much as 10–50 watts per square meter,” said Scott Watkins from the Korean company Kyung-In Synthetic.

Read more

Sep 11, 2015

Spanish cancer patient gets a 3D-printed titanium rib cage

Posted by in categories: 3D printing, biotech/medical

Is there anything 3D printers can’t do? A 54-year-old Spanish man, who had a cancerous tumor in his chest wall, was recently fitted with a 3D printed sternum and rib cage. While the first-of-its-kind implant seems like a Marvel Comics experiment with Adamantium, in reality, it was an ingenious, life saving medical solution that used lightweight yet sturdy, Titanium. The metal printing technique gave the surgeons at the Salamanca University Hospital in Spain the flexibility they needed to customize the complex and unique anatomy of their patient’s chest wall.

They brought in Anatomics, a Melbourne-based company that manufactures surgical products, to help create and print the implant. Based on the patient’s high-resolution CT scan data, the Australian team first created a 3D reconstruction of the patient’s chest wall and tumor so that the surgeons could plan with precision. Next, they used the 3D digital CAD file detailing the patient’s anatomy to build the customized implant, layer by layer, on Arcam’s $1.3 million electron beam metal printer.

Read more

Sep 9, 2015

Watch this little girl unwrap her 3D printed prosthetic arm!

Posted by in categories: 3D printing, biotech/medical, cyborgs

This is awesome!


Watch this little girl unwrap her 3D printed prosthetic arm!

Read more

Sep 5, 2015

Thanks to 3D printing, prosthetics can now be built faster and way cheaper than ever before

Posted by in categories: 3D printing, biotech/medical, cyborgs

Sep 3, 2015

Mars One Mission Called ‘Unsustainable,’ And Here’s Why

Posted by in categories: 3D printing, space

Ever heard of 3-D printing? Besides, if humanity had followed this guys advice, MIT or not, we would have never left Africa. Never built a new village, town, or city. Never gone to the moon — and we DEFINITELY would never have created a place like MIT AT ALL.

Life is messy, painful, rough and often unforgiving, but taking risks is part of our collective species identity. To succeed sometimes we have to fail, and if that’s what happens with this endevor then, at the very least we’ll know what NOT to try next time.

Continue reading “Mars One Mission Called 'Unsustainable,' And Here's Why” »

Sep 3, 2015

Delivering Drugs And Removing Toxins With 3-D Printed Micro-Robots

Posted by in categories: 3D printing, biotech/medical, nanotechnology, robotics/AI

Nanotechnology and 3-D printing are two fields that have huge potential in general, but manipulating this technology and using it in biology also has tremendous and exciting prospects. In a promising prototype, scientists have created micro-robots shaped like fish which are thinner than a human hair, and can be used to remove toxins, sense environments or deliver drugs to specific tissue.

These tiny fish were formed using a high resolution 3-D printing technology directed with UV light, and are essentially aquatic themed sensing, delivery packages. Platinum particles that react with hydrogen peroxide push the fish forward, and iron oxide at the head of the fish can be steered by magnets; both enabling control of where they ‘swim’ off to. And there you have it — a simple, tiny machine that can be customised for various medical tasks.

In a test of concept, researchers attached polydiacetylene (PDA) nanoparticles to the body, which binds with certain toxins and fluoresces in the red spectrum. When these fish entered an environment containing these toxins, they did indeed fluoresce and neutralised the compounds.

Read more

Sep 3, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers

Posted by in categories: 3D printing, biotech/medical, engineering

Advances in 3-D printing have led to new ways to make bone and some other relatively simple body parts that can be implanted in patients. But finding an ideal bio-ink has stalled progress toward printing more complex tissues with versatile functions. Now scientists have developed a silk-based ink that could open up new possibilities toward that goal.

Read more

Sep 1, 2015

DNA-guided 3-D printing of human tissue is unveiled

Posted by in categories: 3D printing, biotech/medical, chemistry

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These mini-tissues in a dish can be used to study how particular structural features of tissue affect normal growth or go awry in cancer. They could be used for therapeutic drug screening and to help teach researchers how to grow whole human organs.

The new technique — called DNA Programmed Assembly of Cells (DPAC) and reported in the journal Nature Methods on August 31, 2015 — allows researchers to create arrays of thousands of custom-designed organoids, such as models of human mammary glands containing several hundred cells each, which can be built in a matter of hours.

There are few limits to the tissues this technology can mimic, said Zev Gartner, PhD, the paper’s senior author and an associate professor of pharmaceutical chemistry at UCSF. “We can take any cell type we want and program just where it goes. We can precisely control who’s talking to whom and who’s touching whom at the earliest stages. The cells then follow these initially programmed spatial cues to interact, move around, and develop into tissues over time.”

Read more