Blog

Archive for the ‘3D printing’ category: Page 121

Feb 27, 2016

A practical solution to mass-producing low-cost nanoparticles

Posted by in categories: 3D printing, biotech/medical, chemistry, health, robotics/AI

Nanoparticles form in a 3-D-printed microfluidic channel. Each droplet shown here is about 250 micrometers in diameter, and contains billions of platinum nanoparticles. (credit: Richard Brutchey and Noah Malmstadt/USC)

USC researchers have created an automated method of manufacturing nanoparticles that may transform the process from an expensive, painstaking, batch-by-batch process by a technician in a chemistry lab, mixing up a batch of chemicals by hand in traditional lab flasks and beakers.

Continue reading “A practical solution to mass-producing low-cost nanoparticles” »

Feb 26, 2016

A New Boeing Patent Describes Levitating 3D Printing

Posted by in categories: 3D printing, futurism

The future of floating additive manufacturing.

Read more

Feb 26, 2016

Australian surgeon inserts 3D-printed vertebrae in world-first

Posted by in categories: 3D printing, biotech/medical

https://www.youtube.com/watch?v=deCY0_Zveeg&feature=youtu.be

An Australian neurosurgeon has completed a world-first marathon surgery removing cancer-riddled vertebrae and successfully replacing them with a 3D-printed body part.

Read more

Feb 25, 2016

Doctors implant 3D-printed vertebrae in ‘world’s first’ surgery

Posted by in categories: 3D printing, biotech/medical, cyborgs, neuroscience

Just Amazing


Ralph Mobbs, a neurosurgeon at the Prince of Wales Hospital in Sydney, made medical history in late 2015 when he successfully replaced two vertebrae with custom made prosthesis. The patient, in his 60s, suffered from Chordoma, a particularly nasty form of cancer that had formed on his top two vertebrae and threatened to cinch off his spinal cord as it grew. That would have left him a quadriplegic. Complicating matters, those top two vertebrae are what allow you to turn and tilt your head, so it’s not like doctors can easily fashion a replacement out of bone grafted from another part of the patient’s body. They have to fit perfectly and that’s where the 3D printers come in.

Mobbs worked with Anatomics, an Australian medical device manufacturer, to craft perfect replicas of the patient’s top two vertebrae out of titanium. This is the first time that these two particular neck bones have been printed and installed. “To be able to get the printed implant that you know will fit perfectly because you’ve already done the operation on a model … It was just a pure delight,” Mobbs told Mashable Australia. “It was as if someone had switched on a light and said ‘crikey, if this isn’t the future, well then I don’t know what is’.”

Continue reading “Doctors implant 3D-printed vertebrae in ‘world’s first’ surgery” »

Feb 25, 2016

Regenerative medicine scientists ‘print’ replacement tissue

Posted by in categories: 3D printing, biotech/medical, life extension

Completed ear and jaw bone structures printed with the Integrated Tissue-Organ Printing System (credit: Wake Forest Baptist Medical Center)

Using a sophisticated, custom-designed 3D printer, regenerative medicine scientists at Wake Forest Baptist Medical Center have proved that it is feasible to print living tissue structures to replace injured or diseased tissue in patients.

Reporting in Nature Biotechnology, the scientists said they printed ear, bone and muscle structures. When implanted in animals, the structures matured into functional tissue and developed a system of blood vessels. Most importantly, these early results indicate that the structures have the right size, strength and function for use in humans.

Continue reading “Regenerative medicine scientists ‘print’ replacement tissue” »

Feb 23, 2016

NASA, Made in Space think big with Archinaut, a robotic 3D printing demo bound for ISS

Posted by in categories: 3D printing, government, robotics/AI, space travel

MOFFETT FIELD, California — Within five years, companies could begin in-orbit manufacturing and assembly of communications satellite reflectors or other large structures, according to Made in Space, the Silicon Valley startup that sent the first 3D printer to the International Space Station in 2014.

As Made in Space prepares to send a second 3D printer into orbit, the company is beginning work with Northrop Grumman and Oceaneering Space Systems on Archinaut, an ambitious effort to build a 3D printer equipped with a robotic arm that the team plans to install in an external space station pod, under a two-year, $20 million NASA contract. The project will culminate in 2018 with an on-orbit demonstration of Archinaut’s ability to additively manufacture and assemble a large, complex structure, said Andrew Rush, Made in Space president.

NASA’s selected the Archinaut project, officially known as Versatile In-Space Robotic Precision Manufacturing and Assembly System, as part of its Tipping Points campaign, which funds demonstrations of space-related technologies on the verge of offering significant payoffs for government and commercial applications. Archinaut was one of three projects NASA selected in November that focus on robotic manufacturing and assembly of spacecraft and structures in orbit.

Continue reading “NASA, Made in Space think big with Archinaut, a robotic 3D printing demo bound for ISS” »

Feb 22, 2016

RMIT Researchers Examine Environmental and Health Risks Posed by 3D Printing

Posted by in categories: 3D printing, computing, health, materials

3D Printing hazardous to the environment due to toxins.


Three-dimensional (3D) printing, also known as additive manufacturing, refers to those technologies capable of developing 3D objects from raw materials, like metals and polymers based on computerized 3D parametric models.

Read more

Feb 22, 2016

3D-printing basic electronic components

Posted by in categories: 3D printing, electronics

UC Berkeley engineers created a “smart cap” using 3-D-printed plastic with embedded electronics to wirelessly monitor the freshness of milk (credit: Photo and schematic by Sung-Yueh Wu)

UC Berkeley engineers, in collaboration with colleagues at Taiwan’s National Chiao Tung University, have developed a 3D printing process for creating basic electronic components, such as resistors, inductors, capacitors, and integrated wireless electrical sensing systems.

As a test, they printed a wireless “smart cap” for a milk carton that detected signs of spoilage using embedded sensors.

Read more

Feb 21, 2016

The audacious plan to end hunger with 3D printed food

Posted by in categories: 3D printing, food, materials

Anjan Contractor’s 3D food printer might evoke visions of the “replicator” popularized in Star Trek, from which Captain Picard was constantly interrupting himself to order tea. And indeed Contractor’s company, Systems & Materials Research Corporation, just got a six month, $125,000 grant from NASA to create a prototype of his universal food synthesizer.

But Contractor, a mechanical engineer with a background in 3D printing, envisions a much more mundane—and ultimately more important—use for the technology. He sees a day when every kitchen has a 3D printer, and the earth’s 12 billion people feed themselves customized, nutritionally-appropriate meals synthesized one layer at a time, from cartridges of powder and oils they buy at the corner grocery store. Contractor’s vision would mean the end of food waste, because the powder his system will use is shelf-stable for up to 30 years, so that each cartridge, whether it contains sugars, complex carbohydrates, protein or some other basic building block, would be fully exhausted before being returned to the store.

Continue reading “The audacious plan to end hunger with 3D printed food” »

Feb 20, 2016

Army selects 3D printed unmanned aircraft systems concept for future experiment

Posted by in categories: 3D printing, transportation

ABERDEEN PROVING GROUND, Md. (Feb. 5, 2016) — Each year, the U.S. Army conducts a series of technology demonstrations known as the Army Expeditionary Warrior Experiments, or AEWE. The event is the U.S. Army Training and Doctrine Command’s live, force-on-force experiment.

AEWE places technologies under development by industry and Army researchers into the hands of Soldiers for early and credible feedback from the end-user.

In January, the AEWE 2017 team selected a project submitted by the U.S. Army Research Laboratory for inclusion in its next round of experimentation: On-Demand Small Unmanned Aircraft Systems, or UAS. It is one of 50 technologies slotted to participate in the experiment with 14 from government researchers and 36 from industry.

Read more