Blog

Jan 28, 2024

Manipulated hafnia paves the way for next-generation memory devices

Posted by in categories: computing, engineering

Scientists and engineers have been pushing for the past decade to leverage an elusive ferroelectric material called hafnium oxide, or hafnia, to usher in the next generation of computing memory. A team of researchers including the University of Rochester’s Sobhit Singh published a study in the Proceedings of the National Academy of Sciences outlining progress toward making bulk ferroelectric and antiferroelectric hafnia available for use in a variety of applications.

In a specific crystal phase, hafnia exhibits —that is, electric polarization that can be changed in one direction or another by applying an external electric field. This feature can be harnessed in . When used in computing, ferroelectric memory has the benefit of non-volatility, meaning it retains its values even when powered off, one of several advantages over most types of memory used today.

“Hafnia is a very exciting material because of its practical applications in computer technology, especially for ,” says Singh, an assistant professor in the Department of Mechanical Engineering. “Currently, to store data we use magnetic forms of memory that are slow, require a lot of energy to operate, and are not very efficient. Ferroelectric forms of memory are robust, ultra-fast, cheaper to produce, and more energy-efficient.”

Comments are closed.