Blog

Jan 15, 2024

A new approach to realize highly efficient, high-dimensional quantum memories

Posted by in categories: particle physics, quantum physics

Many physicists and engineers have been trying to develop highly efficient quantum technologies that can perform similar functions to conventional electronics leveraging quantum mechanical effects. This includes high-dimensional quantum memories, storage devices with a greater information capacity and noise resilience than two-dimensional quantum memories.

So far, developing these high-dimensional memories has proved challenging, and most attempts have not yielded satisfactory efficiencies. In a paper published in Physical Review Letters, a research team at University of Science and Technology of China and Hefei Normal University recently introduced an approach to realize a highly efficient 25-dimensional based on cold atoms.

“Our group has been using the orbital angular momentum mode in the space channel to study high-dimensional quantum and has accumulated a wealth of research experience and technology,” Dong Sheng Ding, co-author of the paper, told Phys.org. “Achieving high-dimensional and high-efficiency quantum storage has always been our goal.”

Comments are closed.