When trying to make a purchase with a shopping app, we may quickly browse the recommendation list while admitting that the machine does know about us—at least, it is learning to do so. As an effective emerging technology, machine learning (ML) has become pretty much pervasive with an application spectrum ranging from miscellaneous apps to supercomputing.
Dedicated ML computers are thus being developed at various scales, but their productivity is somewhat limited: the workload and development cost are largely concentrated in their software stacks, which need to be developed or reworked on an ad hoc basis to support every scaled model.
To solve the problem, researchers from the Chinese Academy of Sciences (CAS) proposed a fractal parallel computing model and published their research in Intelligent Computing on Sept. 5.
Comments are closed.