Blog

Oct 26, 2022

New technology developed for single-cell analysis

Posted by in category: biotech/medical

The ability to analyze the properties of individual cells is vital to broad areas of life science applications, from diagnosing diseases and developing better therapeutics to characterizing pathogenic bacteria and developing cells for bioproduction applications. However, the accurate analysis of individual cells is a challenge, especially when it comes to a cell’s biophysical properties, due to large property variations among cells even in the same cell population as well as the presence of rare cell types within a larger population.

Addressing this need, Dr. Arum Han, Texas Instruments Professor II in the Department of Electrical and Computer Engineering at Texas A&M University, together with his graduate students and postdoctoral researchers, have developed a new technology that can accurately analyze cell properties through the use of a single-cell electrorotation microfluidic device, which utilizes an electric field to probe the cell’s properties.

The technology works by using an electric field to first capture a single cell in a microfluidic device, followed by applying a rotating electric field to rotate the trapped single cell and then measuring the speed of rotation. By knowing the input electric field parameters and analyzing the rotation speed, accurately analyzing the dielectric properties of a single cell becomes possible.

Comments are closed.