Blog

Jul 12, 2021

Memory Making Involves Extensive DNA Breaking

Posted by in categories: biotech/medical, genetics, neuroscience

If you want to learn, then you have to break some things.


Summary: Brain cells snap DNA in more places and in more cell types than previously realized in order to express genes for learning and memory.

Source: Picower Institute for Learning and Memory

The urgency to remember a dangerous experience requires the brain to make a series of potentially dangerous moves: Neurons and other brain cells snap open their DNA in numerous locations—more than previously realized, according to a new study—to provide quick access to genetic instructions for the mechanisms of memory storage.

The extent of these DNA double-strand breaks (DSBs) in multiple key brain regions is surprising and concerning, said study senior author Li-Huei Tsai, Picower Professor of Neuroscience at MIT and director of The Picower Institute for Learning and Memory, because while the breaks are routinely repaired, that process may become more flawed and fragile with age. Tsai’s lab has shown that lingering DSBs are associated with neurodegeneration and cognitive decline and that repair mechanisms can falter.

Comments are closed.