Blog

Jun 4, 2021

Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation

Posted by in categories: biotech/medical, chemistry, genetics, neuroscience

Critical advances in the investigation of brain functions and treatment of brain disorders are hindered by our inability to selectively target neurons in a noninvasive manner in the deep brain.

This study aimed to develop sonothermogenetics for noninvasive, deep-penetrating, and cell-type-specific neuromodulation by combining a thermosensitive ion channel TRPV1 with focused ultrasound (FUS)-induced brief, non-noxious thermal effect.

The sensitivity of TRPV1 to FUS sonication was evaluated in vitro. It was followed by in vivo assessment of sonothermogenetics in the activation of genetically defined neurons in the mouse brain by two-photon calcium imaging. Behavioral response evoked by sonothermogenetic stimulation at a deep brain target was recorded in freely moving mice. Immunohistochemistry staining of ex vivo brain slices was performed to evaluate the safety of FUS sonication.

Comments are closed.