Toggle light / dark theme

Facebook’s smart Ray-Ban glasses are disappointingly familiar

But first, Facebook is going to have to bridge the territory of privacy — not just for those who might have photos taken of them, but for the wearers of these microphone and camera-equipped glasses. VR headsets are one thing (and they come off your face after a session). Glasses you wear around every day are the start of Facebook’s much larger ambition to be an always-connected maker of wearables, and that’s a lot harder for most people to get comfortable with.

Walking down my quiet suburban street, I’m looking up at the sky. Recording the sky. Around my ears, I hear ABBA’s new song, I Still Have Faith In You. It’s a melancholic end to the summer. I’m taking my new Ray Ban smart glasses for a walk.

The Ray-Ban Stories feel like a conservative start. They lack some features that have been in similar products already. The glasses, which act as earbud-free headphones, don’t have 3D spatial audio like the Bose Frames and Apple’s AirPods Pro do. The stereo cameras, on either side of the lenses, don’t work with AR effects, either. Facebook has a few sort-of-AR tricks in a brand-new companion app called View that pairs with these glasses on your phone, but they’re mostly ways of using depth data for a few quick social effects.

Brain-cleaning sleeping cap gets US Army funding

Interesting.


Everybody knows sleep is important, but there’s still a lot we don’t understand about what it actually does to the brain – and how its benefits could be boosted. To investigate, the US Army has awarded researchers at Rice University and other institutions a grant to develop a portable skullcap that can monitor and adjust the flow of fluid through the brain during sleep.

Most of us are familiar with the brain fog that comes with not getting enough sleep, but the exact processes going on in there remain mysterious. In 2012 scientists made a huge breakthrough in the field by discovering the glymphatic system, which cleans out toxic waste products from the brain during deep sleep by flushing it with cerebrospinal fluid. Disruptions to sleep – and therefore the glymphatic system – have been increasingly associated with neurological disorders such as Alzheimer’s.

Studying the glymphatic system could provide new insights into sleep disorders and how to treat them, but currently it requires big bulky MRI machines. So the US Army is funding researchers at Rice University, Houston Methodist and Baylor College of Medicine to develop a wearable skullcap.

Know Labs unveils pocket-sized glucose monitor that swaps fingersticks for radiofrequency sensors

Know Labs’ glucose monitors are both powered by its Body-Radio Frequency Identification, or Bio-RFID, technology. The Bio-RFID sensors emit radio waves to measure specific molecular signatures in the blood through the skin, calculated using spectroscopy.

“We know that not all people with diabetes are looking for a wearable continuous glucose monitoring device to manage their diabetes. Some simply want to replace the painful, inconvenient and expensive fingersticks they currently rely on,” said CEO Phil Bosua, who invented the Bio-RFID technology. “The Bio-RFID sensor we currently use for our internal product testing fits in your pocket and is ready for final use, so we decided to create the KnowU as a portable, affordable and convenient alternative requiring no disposable items, such as test strips and lancets.”

In vitro tests have found that the radiofrequency sensor technology was able to measure glucose levels with accuracy comparable to that of Abbott’s Freestyle Libre continuous glucose monitor, which uses a sensor attached to the back of the arm for up to two weeks at a time. According to a 2018 study (PDF) comparing the two, 97% of the UBand’s readings were within 15% of the values calculated by Abbott’s device.

AugLimb: A compact robotic limb to support humans during everyday activities

Researchers at Japan Advanced Institute of Science and Technology and University of Tokyo recently developed AugLimb, a compact robotic limb that could support humans as they complete a variety of tasks. This new limb, presented in a paper pre-published on arXiv, can extend up to 250 mm and grasp different objects in a user’s vicinity.

“We are interested in human augmentation technologies, which aim to enhance human capabilities with information and robotics approaches,” Haoran Xie, one of the researchers who carried out the study, told Tech Xplore. “We particularly focus on the physical augmentation of human bodies.”

Most existing wearable robotic arms are designed to be mounted on a human user’s upper body (e.g., on the upper arm, waist or shoulders). While some of these systems have achieved promising results, they are typically based on bulky hardware and wearing them can be uncomfortable for users.

Stretching the capacity of flexible energy storage

Some electronics can bend, twist and stretch in wearable displays, biomedical applications and soft robots. While these devices’ circuits have become increasingly pliable, the batteries and supercapacitors that power them are still rigid. Now, researchers in ACS’ Nano Letters report a flexible supercapacitor with electrodes made of wrinkled titanium carbide — a type of MXene nanomaterial — that maintained its ability to store and release electronic charges after repetitive stretching.

One major challenge stretchable electronics must overcome is the stiff and inflexible nature of their energy storage components, batteries and supercapacitors. Supercapacitors that use electrodes made from transitional metal carbides, carbonitrides or nitrides, called MXenes, have desirable electrical properties for portable flexible devices, such as rapid charging and discharging. And the way that 2D MXenes can form multi-layered nanosheets provides a large surface area for energy storage when they’re used in electrodes. However, previous researchers have had to incorporate polymers and other nanomaterials to keep these types of electrodes from breaking when bent, which decreases their electrical storage capacity. So, Desheng Kong and colleagues wanted to see if deforming a pristine titanium carbide MXene film into accordion-like ridges would maintain the electrode’s electrical properties while adding flexibility and stretchability to a supercapacitor.

The researchers disintegrated titanium aluminum carbide powder into flakes with hydrofluoric acid and captured the layers of pure titanium carbide nanosheets as a roughly textured film on a filter. Then they placed the film on a piece of pre-stretched acrylic elastomer that was 800% its relaxed size. When the researchers released the polymer, it shrank to its original state, and the adhered nanosheets crumpled into accordion-like wrinkles.

Graphene made with lasers for wearable health devices

Graphene, hexagonally arranged carbon atoms in a single layer with superior pliability and high conductivity, could advance flexible electronics according to a Penn State-led international research team. Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in Penn State’s Department of Engineering Science and Mechanics (ESM), heads the collaboration, which recently published two studies that could inform research and development of future motion detection, tactile sensing and health monitoring devices.

Investigating how laser processing affects graphene form and function

Several substances can be converted into carbon to create graphene through . Called laser-induced graphene (LIG), the resulting product can have specific properties determined by the original material. The team tested this process and published their results in SCIENCE CHINA Technological Sciences.

Paving the path to electrically-pumped lasers from colloidal-quantum-dot solutions

In a new review article in Nature Photonics, scientists from Los Alamos National Laboratory assess the status of research into colloidal quantum dot lasers with a focus on prospective electrically pumped devices, or laser diodes. The review analyzes the challenges for realizing lasing with electrical excitation, discusses approaches to overcome them, and surveys recent advances toward this objective.

“Colloidal quantum dot lasers have tremendous potential in a range of applications, including integrated optical circuits, wearable technologies, lab-on-a-chip devices, and advanced medical imaging and diagnostics,” said Victor Klimov, a senior researcher in the Chemistry division at Los Alamos and lead author of the cover article in Nature Photonics. “These solution-processed quantum dot present unique challenges, which we’re making good progress in overcoming.”

Heeyoung Jung and Namyoung Ahn, also of Los Alamos’ Chemistry division, are coauthors.

Young visually impaired Southampton fans finally see football clearly thanks to Virgin Media

Two young visually impaired Southampton fans were finally able to be mascots and watch their beloved Saints in action against Manchester United at the weekend thanks to life-changing wearable technology provided by Virgin Media.

Florence and Joshua both experience issues with their eyesight, meaning that they have never been able to clearly see their favourite team play. Back in March 2,020 Virgin Media gave them cutting-edge technology before they were due to take on the role of mascots for the game against Manchester City.

Smart ‘E-Skin’ Identifies Your Movements

Technion scientists have created a wearable motion sensor capable of identifying movements such as bending and twisting. This smart ‘e-skin’ was produced using a highly stretchable electronic material, which essentially forms an electronic skin capable of recognizing the range of movement human joints normally make, with up to half a degree precision.

This breakthrough is the result of collaborative work between researchers from different fields in the Laboratory for Nanomaterial-Based Devices, headed by Professor Hossam Haick from the Technion Wolfson Faculty of Chemical Engineering. It was recently published in Advanced Materials and was featured on the journal’s cover.


This wearable motion sensor, which senses bending and twisting, can be applied in healthcare and manufacturing.

/* */