Toggle light / dark theme

Innovations in engine technology are making water a potential fuel source, leveraging hydrogen extracted from H₂O.


Toyota’s latest breakthrough in sustainable mobility — the world’s first water engine. Departing from conventional hydrogen-powered vehicles, this groundbreaking innovation operates at an unprecedented temperature of 2500°C, thanks to its ingenious water-cooled design. But that’s not all — equipped with a special dual injection system, this engine delivers unparalleled efficiency and performance.

A new technology has been developed to convert common seaweeds such as Kkosiraegi, which are often used in cooking, into high-quality sources for both bio-aviation fuels and energy storage devices. The results were published in the Chemical Engineering Journal.

In a surprise revelation, Toyota has sent shockwaves throughout the automotive world with an all-new engine that melds combustion technology with the potential for zero emissions. This stealth development may transform our thinking about green energy and the future of transportation. For two decades, the world has been struggling over what the road to sustainable transport would look like, and to date, EVs have proven a front-runner. However, Toyota’s latest development puts a monkey wrench into that thinking by suggesting that a hydrogen-powered combustion engine may be what carries us into the future.

While Toyota is no stranger to innovation—it gave the world its first mass-produced hybrid, the Prius, back in 1997—it has traditionally taken a more cautious approach toward anything resembling an electric vehicle. Less conservatively speaking, the hydrogen-powered combustion engine signifies a quantum leap. This latest motor technology is based on a variant of the same 1.6-liter turbocharged three-cylinder used in its GR Corolla and GR Yaris. Instead, it relies on hydrogen, not traditional gasoline, to run the engine, making it cleaner than conventional combustion engines.

This innovative engine could also hold the key to one of the most significant challenges for the car-making industry: balancing high performance with sustainability. While electric cars take away that visceral experience from driving enthusiasts, Toyota’s hydrogen engine ensures a gasoline-powered car’s rumble, response, and mechanical integrity. The company tested it thoroughly through the grueling conditions of motorsports, including endurance events such as the Fuji 24 Hours.

When cars, planes, ships or computers are built from a material that functions as both a battery and a load-bearing structure, the weight and energy consumption are radically reduced. A research group at Chalmers University of Technology in Sweden is now presenting a world-leading advance in so-called massless energy storage — a structural battery that could halve the weight of a laptop, make the mobile phone as thin as a credit card or increase the driving range of an electric car by up to 70% on a single charge.

“We have succeeded in creating a battery made of carbon fiber composite that is as stiff as aluminum and energy-dense enough to be used commercially. Just like a human skeleton, the battery has several functions at the same time,” says Chalmers researcher Richa Chaudhary, who is the first author of an article recently published in Advanced Materials.

Research on structural batteries has been going on for many years at Chalmers, and in some stages also together with researchers at the KTH Royal Institute of Technology in Stockholm, Sweden. When Professor Leif Asp and colleagues published their first results in 2018 on how stiff, strong carbon fibers could store electrical energy chemically, the advance attracted massive attention.

A new model accounts for a wide range of ion-electrode interactions and predicts a device’s ability to store electric charge. The model’s theoretical predictions align with the experimental results. Data on the behavior of the electric double layer (EDL) can aid in the development of more efficient supercapacitors for portable electronics and electric vehicles. The study has been published in ChemPhysChem.

American start-up Boom Supersonic is planning to develop the very first supersonic aircraft powered by 100% sustainable fuel. The aircraft, named Overture, would succeed Concorde in providing ultrafast connections between Europe and the United States, more than 20 years after the latter ceased operation. The new aircraft also echoes its predecessor’s unique, long and slender design.

Boom Supersonic is currently flying a demonstrator, the XB-1, over the Mojave Desert in California. A first supersonic flight (at Mach 1) is now expected by the end of 2024, following the green light given from the Federal Aviation Administration (FAA). All these tests are designed to ensure the aircraft’s reliability and maneuverability. Above all, they lay the foundations for the firm’s future Overture plane.

Extinct volcanoes are hard to study – we never see them erupt. Using a unique experimental technique, we were able to recreate a certain type of extinct volcano in a lab, learning more about the magma these volcanoes produce.

We found that some rare magma types are surprisingly efficient at concentrating rare earth elements. This is a group of metals with crucial applications in several high-tech industries, such as magnets for electric vehicles and wind turbines.

Demand for rare earths is soaring as society moves away from fossil fuels and electrifies energy production and transport. Despite the name, rare earths aren’t particularly rare. The biggest challenge is finding rocks in which these metals are concentrated enough to be economically viable to extract.