Toggle light / dark theme

Researchers at Lawrence Livermore National Laboratory (LLNL) have developed a new approach that combines generative artificial intelligence (AI) and first-principles simulations to predict three-dimensional (3D) atomic structures of highly complex materials.

This research highlights LLNL’s efforts in advancing machine learning for materials science research and supporting the Lab’s mission to develop innovative technological solutions for energy and sustainability.

The study, recently published in Machine Learning: Science and Technology, represents a potential leap forward in the application of AI for materials characterization and inverse design.

Forest ecosystems of the future will have to cope with very different conditions to those of today. For this reason, researchers at the Technical University of Munich (TUM) state that a strategic approach to forest management is crucial. To this end, the research team has developed iLand: a simulation model that can compute long-term developments of large forest landscapes, right down to the individual tree—including disturbances from bark beetles to wildfires.

Charred tree trunks and blackened soil are typical of the desolation that a leaves behind. Inevitably, the question arises whether it will be possible to restore a green natural landscape. According to Rupert Seidl, Professor of Ecosystem Dynamics and Forest Management, this is possible, but the “how” decides how much the new forest will benefit the climate, nature and people.

“Today’s forest ecosystems are not particularly well adapted to future climate conditions,” says Seidl. “Over the next decades they will presumably come under increasing pressure from water shortage and insect pests, and may even die off. This is why it makes sense to use measures such as the reforestation of disturbed areas to strategically select tree species and take future developments into consideration.”

Water electrolysis is a cornerstone of global sustainable and renewable energy systems, facilitating the production of hydrogen fuel. This clean and versatile energy carrier can be utilized in various applications, such as chemical CO2 conversion, and electricity generation. Utilizing renewable energy sources such as solar and wind to power the electrolysis process may help reduce carbon emissions and promote the transition to a low-carbon economy.

The development of efficient and stable anode materials for the Oxygen Evolution Reaction (OER) is essential for advancing Proton Exchange Membrane (PEM) water electrolysis technology. OER is a key electrochemical reaction that generates oxygen gas (O₂) from water (H₂O) or hydroxide ions (OH⁻) during water splitting.

This seemingly simple reaction is crucial in energy conversion technologies like as it is hard to efficiently realize and a concurrent process to the wanted hydrogen production. Iridium (Ir)-based materials, particularly amorphous hydrous oxide (am-hydr-IrOx), are at the forefront of this research due to their high activity. However, their application is limited by high dissolution rates of the precious iridium.

Researchers at the University of Reading and University College London have developed a new artificial intelligence model that can predict how atoms arrange themselves in crystal structures. Called CrystaLLM, the technology works similarly to AI chatbots, by learning the “language” of crystals by studying millions of existing crystal structures. It could lead to faster discovery of new materials for everything from solar panels to computer chips.

Read Full Story.

Wuhan University-led research is reporting the development of a revivable self-assembled supramolecular biomass fibrous framework (a novel foam filter) that efficiently removes microplastics from complex aquatic environments.

Plastic waste is a growing global concern due to significant levels of microplastic pollution circulating in soil and waterways and accumulating in the environment, food webs and human tissues. There are no conventional methods for removing microplastics, and developing strategies to handle diverse particle sizes and chemistries is an engineering challenge.

Researchers have been looking for affordable, capable of universal microplastic adsorption. Most existing approaches involve expensive or difficult-to-recover adsorbents, fail under certain environmental conditions, or only target a narrow range of microplastic types.

A pair of new studies by scientists at the University of Miami Rosenstiel School of Marine, Atmospheric, and Earth Science and the School of Architecture, shed new light on the potential of climate-inspired architectural and urban design proposals, termed “climatopias,” to effectively address climate change challenges. These studies analyze both specific high-profile projects and a broader range of proposals, providing valuable frameworks for evaluating their effectiveness, feasibility, and social justice implications.

The first paper focuses on a detailed analysis of four prominent climatopic design projects. Utilizing a novel evaluation approach, the researchers assessed each project on its effectiveness, justice, and feasibility.

Key findings indicate that for climatopias to serve as viable climate solutions, they must prioritize their embodied , feature affordable and participatory designs, and possess the potential for actual implementation or stimulate critical discourse around decarbonization and adaptation strategies, enriching in climate resilience. The findings are published in the journal One Earth.

Microplastics are an environmental hazard found nearly everywhere on Earth, released by the breakdown of tires, clothing, and plastic packaging. Another significant source of microplastics is tiny beads that are added to some cleansers, cosmetics, and other beauty products.

In an effort to cut off some of these microplastics at their source, MIT researchers have developed a class of biodegradable materials that could replace the plastic beads now used in beauty products. These polymers break down into harmless sugars and amino acids.


MIT researchers developed biodegradable materials that could replace the plastic microbeads now used in beauty products. The materials could also be used to encapsulate nutrients for food fortification.

It was 1,229 CE in the monastery of St Sabas, near Jerusalem, and a monk named Johannes Myronas was in need of some parchment. He had evidently been tasked with creating a copy of the Euchologion – an important book of prayer and worship directions for Eastern Orthodox and Byzantine Catholic churches.

The problem was, parchment was expensive and hard to come by. Recycling was the name of the game, and Johannes had just the thing: a 200-year-old manuscript filled with old math notes that nobody was all that interested in anymore. Compared with the Holy Word, there was no contest: he pulled it apart, scraped the old text off, and used the pages for the new book – a technique known as palimpsesting.

You probably know where this is going. In creating his Euchologion, Johannes had – presumably unwittingly – destroyed one of the most valuable relics of Archimedes’s work. Not just some notebook or single treatise, even: the manuscript now known as “Codex C” contained multiple works from the ancient polymath, some of which now exist nowhere else in the world.

In the fast-paced world of electric vehicles (EVs), a major breakthrough in battery technology is set to significantly enhance energy storage capacity. This development arrives at a crucial moment, as the EV industry is experiencing rapid growth, making it an ideal time for such a transformative advancement.

Researchers at Pohang University of Science & Technology (POSTECH) have introduced a revolutionary technique that can amplify the energy storage capacity of batteries by an astonishing tenfold. This leap forward not only propels battery technology to new heights but also has the potential to reshape the entire landscape of electric vehicles.

The key to understanding battery function lies in the anode, the component responsible for storing power during charging and then releasing it when the battery is in use. In most modern lithium batteries, graphite is the predominant material used for anodes.

The larger challenge for hydrogen is sourcing it from green suppliers. Electrolyzers are used to harvest green hydrogen by splitting water into its component atoms. For the hydrogen to be green it has to either come from natural-occurring sources which are rare or from producing it using renewable energy generated by hydro, solar, onshore, and offshore wind turbines. Building an electrolyzer infrastructure would be key to creating hydrogen-powered vehicles for long-distance travel with quick refuelling turnarounds. The trucking industry is likely the best candidate for the use of this fuel and technology.

Making ICE-Powered Vehicles More Efficient.

About 99% of global transportation today runs on ICE with 95% of the energy coming from liquid fuels made from petroleum. Experts at Yanmar Replacements Parts, a diesel engine aftermarket supplier, state that, “while hydrogen-powered and electric vehicles will be on the rise, ICEs will continue to remain the norm and will be for the foreseeable future.” That’s why companies are reluctant to abandon ICE to make the technology more compatible to lower carbon emissions. By choosing different materials during manufacturing, automotive companies believe that production emissions can be abated by 66%.

[an error occurred while processing this directive]