Toggle light / dark theme

Supercomputer-Powered Machine Learning Supports Fusion Energy Reactor Design

Energy researchers have been reaching for the stars for decades in their attempt to artificially recreate a stable fusion energy reactor. If successful, such a reactor would revolutionize the world’s energy supply overnight, providing low-radioactivity, zero-carbon, high-yield power – but to date, it has proved extraordinarily challenging to stabilize. Now, scientists are leveraging supercomputing power from two national labs to help fine-tune elements of fusion reactor designs for test runs.

In experimental fusion reactors, magnetic, donut-shaped devices called “tokamaks” are used to keep the plasma contained: in a sort of high-stakes game of Operation, if the plasma touches the sides of the reactor, the reaction falters and the reactor itself could be severely damaged. Meanwhile, a divertor funnels excess heat from the vacuum.

In France, scientists are building the world’s largest fusion reactor: a 500-megawatt experiment called ITER that is scheduled to begin trial operation in 2025. The researchers here were interested in estimating ITER’s heat-load width: that is, the area along the divertor that can withstand extraordinarily hot particles repeatedly bombarding it.

Supercomputer turns back cosmic clock

Astronomers have tested a method for reconstructing the state of the early universe by applying it to 4000 simulated universes using the ATERUI II supercomputer at the National Astronomical Observatory of Japan (NAOJ). They found that together with new observations, the method can set better constraints on inflation, one of the most enigmatic events in the history of the universe. The method can shorten the observation time required to distinguish between various inflation theories.

New research tackles a central challenge of powerful quantum computing

To build a universal quantum computer from fragile quantum components, effective implementation of quantum error correction (QEC) is an essential requirement and a central challenge. QEC is used in quantum computing, which has the potential to solve scientific problems beyond the scope of supercomputers, to protect quantum information from errors due to various noise.

Advanced simulations reveal how air conditioning spreads COVID-19 aerosols

The detailed physical processes and pathways involved in the transmission of COVID-19 are still not well understood. Researchers decided to use advanced computational fluid dynamics tools on supercomputers to deepen understanding of transmission and provide a quantitative assessment of how different environmental factors influence transmission pathways and airborne infection risk.

Hyperchaos Phenomenon Used to Model Complex Quantum Systems at a Fraction of the Computing Power

Physicists have discovered a potentially game-changing feature of quantum bit behavior that would allow scientists to simulate complex quantum systems without the need for enormous computing power.

For some time, the development of the next generation of quantum computers has limited by the processing speed of conventional CPUs.

Even the world’s fastest supercomputers have not been powerful enough, and existing quantum computers are still too small, to be able to model moderate-sized quantum structures, such as quantum processors.

Chinese quantum computer completes 2.5-billion-year task in minutes

Circa 2020 o.o


Researchers in China claim to have achieved quantum supremacy, the point where a quantum computer completes a task that would be virtually impossible for a classical computer to perform. The device, named Jiuzhang, reportedly conducted a calculation in 200 seconds that would take a regular supercomputer a staggering 2.5 billion years to complete.

Traditional computers process data as binary bits – either a zero or a one. Quantum computers, on the other hand, have a distinct advantage in that their bits can also be both a one and a zero at the same time. That raises the potential processing power exponentially, as two quantum bits (qubits) can be in four possible states, three qubits can be in eight states, and so on.

That means quantum computers can explore many possibilities simultaneously, while a classical computer would have to run through each option one after the other. Progress so far has seen quantum computers perform calculations much faster than traditional ones, but their ultimate test would be when they can do things that classical computers simply can’t. And that milestone has been dubbed “quantum supremacy.”