Toggle light / dark theme

Active phase discovery in heterogeneous catalysis via topology-guided sampling and machine learning

Global optimization-based approaches such as basin hopping28,29,30,31, evolutionary algorithms32 and random structure search33 offer principled approaches to comprehensively navigating the ambiguity of active phase. However, these methods usually rely on skillful parameter adjustments and predefined conditions, and face challenges in exploring the entire configuration space and dealing with amorphous structures. The graph theory-based algorithms34,35,36,37, which can enumerate configurations for a specific adsorbate coverage on the surface with graph isomorphism algorithms, even on an asymmetric one. Nevertheless, these methods can only study the adsorbate coverage effect on the surface because the graph representation is insensitive to three-dimensional information, making it unable to consider subsurface and bulk structure sampling. Other geometric-based methods38,39 also have been developed for determining surface adsorption sites but still face difficulties when dealing with non-uniform materials or embedding sites in subsurface.

Topology, independent of metrics or coordinates, presents a novel approach that could potentially offer a comprehensive traversal of structural complexity. Persistent homology, an emerging technique in the field of topological data analysis, bridges the topology and real geometry by capturing geometric structures over various spatial scales through filtration and persistence40. Through embedding geometric information into topological invariants, which are the properties of topological spaces that remain unchanged under specific continuous deformations, it allows the monitoring of the “birth,” “death,” and “persistence” of isolated components, loops, and cavities across all geometric scales using topological measurements. Topological persistence is usually represented by persistent barcodes, where different horizontal line segments or bars denote homology generators41. Persistent homology has been successfully employed to the feature representation for machine learning42,43, molecular science44,45, materials science46,47,48,49,50,51,52,53,54,55, and computational biology56,57. The successful application motivates us to explore its potential as a sampling algorithm due to its capability of characterizing material structures multidimensionally.

In this work, we introduce a topology-based automatic active phase exploration framework, enabling the thorough configuration sampling and efficient computation via MLFF. The core of this framework is a sampling algorithm (PH-SA) in which the persistent homology analysis is leveraged to detect the possible adsorption/embedding sites in space via a bottom-up approach. The PH-SA enables the exploration of interactions between surface, subsurface and even bulk phases with active species, without being limited by morphology and thus can be applied to periodical and amorphous structures. MLFF are then trained through transfer learning to enable rapid structural optimization of sampled configurations. Based on the energetic information, Pourbaix diagram is constructed to describe the response of active phase to external environmental conditions. We validated the effectiveness of the framework with two examples: the formation of Pd hydrides with slab models and the oxidation of Pt clusters in electrochemical conditions. The structure evolution process of these two systems was elucidated by screening 50,000 and 100,000 possible configurations, respectively. The predicted phase diagrams with varying external potentials and their intricate roles in shaping the mechanisms of CO2 electroreduction and oxygen reduction reaction were discussed, demonstrating close alignment with experimental observations. Our algorithm can be easily applied to other heterogeneous catalytic structures of interest and pave the way for the realization of automatic active phase analysis under realistic conditions.

Puzzling observation by JWST: Galaxies in the deep universe rotate in the same direction

In just over three years since its launch, NASA’s James Webb Space Telescope (JWST) has generated significant and unprecedented insights into the far reaches of space, and a new study by a Kansas State University researcher provides one of the simplest and most puzzling observations of the deep universe yet.

In images of the deep universe taken by the James Webb Space Telescope Advanced Deep Extragalactic Survey, the vast majority of the galaxies rotate in the same direction, according to research by Lior Shamir, associate professor of computer science at the Carl R. Ice College of Engineering. About two thirds of the galaxies rotate clockwise, while just about a third of the galaxies rotate counterclockwise.

The study— published in Monthly Notices of the Royal Astronomical Society —was done with 263 galaxies in the JADES field that were clear enough to identify their direction of rotation.

TOI-1453 c: A key sub-Neptune discovered in a system of two exoplanets

Astrophysicists have once again enriched our knowledge of the cosmos with a new discovery: two small planets orbiting TOI-1453. Located at around 250 light years from Earth in the Draco constellation, this star is part of a binary system (a pair of stars orbiting each other) and is slightly cooler and smaller than our sun. This discovery, published in the journal Astronomy & Astrophysics, paves the way for future atmospheric studies to better understand these types of planets.

Around this star are two planets, a super-Earth and a sub-Neptune. These are types of planets that are absent from our own solar system, but paradoxically constitute the most common classes of planet in the Milky Way. This discovery sheds light on a planetary configuration that could provide valuable clues to the formation and evolution of planets.

Using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the HARPS-N high-resolution spectrograph, the researchers were able to identify TOI-1453 b and TOI-1453 c, the two exoplanets orbiting TOI-1453.

LHCb Delivers a Key Piece in the CP-Violation Puzzle

A symmetry violation has been observed in a particle-decay process that—together with five related decays—could shed light on the matter–antimatter imbalance in the Universe.

The known Universe has some 1012 galaxies that are made out of matter and no galaxies that are made out of antimatter. This is a surprising result because matter and antimatter are expected to exist in equal quantities. More formally, matter and antimatter are related by a symmetry known as CP symmetry, which states that a particle and its antiparticle should obey the same laws of nature. A necessary condition for the observed imbalance between matter and antimatter in the Universe is therefore a violation of CP symmetry—for a review see H. R. Quinn and Y. Nir [1]. Solving this puzzle has driven extensive experimental efforts that have revealed such a violation in different particle sectors. The Large Hadron Collider Beauty (LHCb) Collaboration at CERN has now measured a CP violation in a certain decay channel of B ±].

A New Type of Time Crystal

Time crystals realized in the so-called quasiperiodic regime hold promise for future applications in quantum computing and sensing.

In ordinary crystals, atoms or molecules form a repeating pattern in space. By extension, in quantum systems known as time crystals, particles form a repeating pattern in both space and time. These exotic systems were predicted in 2012 and first demonstrated in 2016 (see Viewpoint: How to Create a Time Crystal). Now Chong Zu at Washington University in St. Louis and his colleagues have experimentally realized a new form of time crystal called a discrete-time quasicrystal [1]. The team suggests that such states could be useful for high-precision sensing and advanced signal processing.

Conventional time crystals are created by subjecting a collection of particles to an external driving force that is periodic in time. Zu and his colleagues instead selected a quasiperiodic drive in the form of a structured but nonrepeating sequence of microwave pulses. The researchers applied this quasiperiodic drive to an ensemble of strongly interacting spins associated with structural defects, known as nitrogen-vacancy centers, in diamond. They then tracked the resulting dynamics of these spins using a laser microscope.

Hera asteroid mission spies Mars’s Deimos moon

While performing yesterday’s flyby of Mars, ESA’s Hera mission for planetary defence made the first use of its payload for scientific purposes beyond Earth and the Moon. Activating a trio of instruments, Hera imaged the surface of the red planet as well as the face of Deimos, the smaller and more mysterious of Mars’s two moons.

Launched on 7 October 2024, Hera is on its way to visit the first asteroid to have had its orbit altered by human action. By gathering close-up data about the Dimorphos asteroid, which was impacted by NASA’s DART spacecraft in 2022, Hera will help turn asteroid deflection into a well understood and potentially repeatable technique.

Hera’s 12 March flyby of Mars was an integral part of its cruise phase through deep space, carefully designed by ESA’s Flight Dynamics team. By coming as close as 5,000 km away from Mars, the planet’s gravity shifted the spacecraft’s trajectory towards its final destination, Dimorphos and the larger Didymos asteroid it orbits around. This manoeuvre shortened Hera’s journey time by many months and saved a substantial amount of fuel.

Robots In Space: Cygnus — NOM4D — Illini

Watch the latest space experiment developed by the Fighting Illini!🚀🤖


Step into the future of space construction! Watch as University of Illinois researchers revolutionize how we build in space using advanced robotics and innovative composite materials. In this episode of Robots In Space, aerospace engineer Mike DiVerde breaks down the groundbreaking DARPA NOM4D program that’s sending experimental manufacturing technology to the International Space Station. Discover how the Fighting Illini are pioneering techniques that could transform space infrastructure construction, making it faster, cheaper, and more efficient than ever before. From Cygnus spacecraft operations to microgravity experiments, this video showcases cutting-edge aerospace engineering that’s pushing the boundaries of what’s possible in space.

#SpaceManufacturing #DARPANOM4D #SpaceRobotics #FightingIllini #AerospaceEngineering

A new protocol to image wave functions in continuous space

In recent years, physicists have been trying to better understand the behavior of individual quantum particles as they move in space. Yet directly imaging these particles with high precision has so far proved challenging, due to the limitations of existing microscopy methods.

Researchers at CNRS and École Normale Supérieure in Paris, France, have now developed a new protocol to directly image the evolution of a single-atom wave packet, a delocalized quantum state that determines the probability that an associated atom will be found in a specific location. This imaging technique, introduced in Physical Review Letters, could open exciting possibilities for the precise study of complex quantum systems in continuous space.

“Our group is interested in the study of ultracold atoms, the coldest systems in the universe, just a few billionths of degrees above absolute zero, where matter displays fascinating behaviors,” Tarik Yefsah, senior author of the paper, told Phys.org. “One of these behaviors is the so-called superfluidity, a remarkable state of matter, where particles flow without friction.

/* */