Have you ever wondered what it would be like to upload your mind to a computer? To have a digital copy of your personality, memories, and skills that could live on after your biological death? This is the idea behind whole brain emulation, a hypothetical process of scanning a brain and creating a software version of it that can run on any compatible hardware. In this video, we will explore the science and challenges of whole brain emulation, the ethical and social implications of creating digital minds, and the potential benefits and risks of this technology for humanity. Join us as we dive into the fascinating world of whole-brain emulation!
#wholebrainemulation.
#minduploading.
#digitalimmortality.
#artificialintelligence.
#neuroscience.
#braincomputerinterface.
#substrateindependentminds.
#transhumanism.
#futurism.
#mindcloning
Category: science – Page 8
AI systems mass-producing cheap research would be bad news for an already struggling scientific ecosystem.
The progress of science in the last 400 years is mind-blowing. Who would have thought we’d be able to trace the history of our universe to its origins 14 billion years ago? Science has increased the length and the quality of our lives, and the technology that is commonplace in the modern world would have seemed like magic to our ancestors.
For all of these reasons and more, science is rightly celebrated and revered. However, a healthy pro-science attitude is not the same thing as “scientism”, which is the view that the scientific method is the only way to establish truth. As the problem of consciousness is revealing, there may be a limit to what we can learn through science alone.
Perhaps the most worked out form of scientism was the early 20th century movement knows as logical positivism. The logical positivists signed up to the “verification principle”, according to which a sentence whose truth can’t be tested through observation and experiments was either logically trivial or meaningless gibberish. With this weapon, they hoped to dismiss all metaphysical questions as not merely false but nonsense.
The Monty Hall Problem.
Goat or no Goat!
Matt Hodgson reviews Why Machines Learn: The Elegant Maths Behind Modern AI by Anil Ananthaswamy.
A very dangerous position to be in the world community of scientist should gather in agreement those friendly to the values and principles of democracy to advance science for the good humanity and freedom.
The U.S. sorely needs a coordinated national research strategy, says Marcia McNutt, president of the U.S. National Academy of Sciences.
In a first-ever “State of the Science” address at the end of June, National Academy of Sciences president Marcia McNutt warned that the U.S. was ceding its global scientific leadership to other countries—highlighting China in particular. McNutt, a widely respected geophysicist, said this slippage could make it harder for the U.S. to maintain the strength of its economy and protect its national security. She also laid out a provisional plan of action to reverse the decline.
Terry Tao is one of the world’s leading mathematicians and winner of many awards including the Fields Medal. He is Professor of Mathematics at the University of California, Los Angeles (UCLA). Following his talk, Terry is in conversation with fellow mathematician Po-Shen Loh.
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
‘Earth Science to Action: How NASA connects space to village’ Learn from experts how NASA’s cutting-edge Earth observation and satellite technology is empowering communities worldwide to tackle climate change and natural disasters. This talk, organised by the SERVIR-HKH initiative at ICIMOD, features key speakers Dan Irwin (SERVIR Global Program Manager) and Ashutosh Limaye (SERVIR Chief Scientist) from NASA Marshall Space Flight Center. Learn how these advancements are bridging the gap between data and actionable insights for a thriving planet.
Science news, Egyptian crocodile news: Modern technology is helping us to learn more and more about our ancient past. I can only imagine what secrets technology might help reveal in the future.
A discrepancy between mathematics and physics has plagued astrophysicists’ understanding of how supermassive black holes merge, but dark matter may have the answer.
Grasping the precise energy landscapes of quantum particles can significantly enhance the accuracy of computer simulations for material sciences. These simulations are instrumental in developing advanced materials for applications in physics, chemistry, and sustainable technologies. The research tackles longstanding questions from the 1980s, paving the way for breakthroughs across various scientific disciplines.
An international group of physicists, led by researchers at Trinity College Dublin, has developed new theorems in quantum mechanics that explain the “energy landscapes” of quantum particle collections. Their work resolves decades-old questions, paving the way for more accurate computer simulations of materials. This advancement could significantly aid scientists in designing materials poised to revolutionize green technologies.
The new theorems have just been published in the prominent journal Physical Review Letters. The results describe how the energy of systems of particles (such as atoms, molecules, and more exotic matter) changes when their magnetism and particle count change. Solving an open problem important to the simulation of matter using computers, this extends a series of landmark works commencing from the early 1980s.