Toggle light / dark theme

What can a moon’s tidal friction teach us about its formation and evolution? This is what a recent study published in Science Advances hopes to address as a team of researchers at the University of California Santa Cruz investigated a connection between the spin rate and tidal energy on Saturn’s moon, Titan, to determine more about Titan’s interior. This study has the potential to help researchers better understand the internal processes of Titan, leading to better constraints on the existence of a subsurface ocean.

For the study, the researchers used a combination of data obtained by NASA’s now-retired Cassini spacecraft and a series of mathematical calculations to determine Titan’s tidal dissipation, which is the amount of tidal energy lost in an object from friction and other processes, and for which the only moons in the solar system this has been successfully been accomplished being the Earth’s Moon and Jupiter’s volcanic moon, Io. Better understanding a moon’s tidal dissipation helps researchers better understand its formation and evolution, which the researchers successfully estimated for Titan.

“Tidal dissipation in satellites affects their orbital and rotational evolution and their ability to maintain subsurface oceans,” said Dr. Brynna Downey, who is a postdoctoral researcher at the Southwest Research Institute in Colorado and lead author of the study. “Now that we have an estimate for the strength of tides on Titan, what does it tell us about how quickly the orbit is changing? What we discovered is that it’s changing very quickly on a geologic timescale.”

An electrospray engine applies an electric field to a conductive liquid, generating a high-speed jet of tiny droplets that can propel a spacecraft. These miniature engines are ideal for small satellites called CubeSats that are often used in academic research.

Since engines utilize more efficiently than the powerful, chemical rockets used on the launchpad, they are better suited for precise, in-orbit maneuvers. The thrust generated by an electrospray emitter is tiny, so electrospray engines typically use an array of emitters that are uniformly operated in parallel.

However, these multiplexed electrospray thrusters are typically made via expensive and time-consuming semiconductor cleanroom fabrication, which limits who can manufacture them and how the devices can be applied.

We’ve yet to see a falling piece of space debris strike an airplane, but if it happens, the consequences would almost certainly be catastrophic – and according to a new study, the danger posed to planes is only rising.

The researchers behind the study, from the University of British Columbia in Canada, looked at worldwide flight data to model the distribution of planes in the sky, then compared this to records of uncontrolled rocket body reentries.

The increasing risk is also being driven in part by the mass deployment of satellites, like SpaceX’s Starlink, which will eventually reenter our airspace.

face_with_colon_three Big change to cellular satellites directly to cell phones now where wherever there is sky you link up with no receiver other than a smartphone.


T-Mobile’s push to allow AT&T and Verizon customers to tap into its cellular Starlink service underscores a growing competition in the satellite-to-phone market.

Croatia’s first ever satellite has just beamed to Earth the first image of its homeland.

The satellite, called CroCube, is a 1U cubesat 3.3 by 3.3 by 3.3 inches (10 × 10 × 10 centimeters) in size. It launched to space aboard a SpaceX Falcon 9 rocket in late December on the company’s Bandwagon-2 rideshare mission.

The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.

With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology.

The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight.

“These are among the smallest signals detected by the Swarm mission so far,” Alexander Grayver, a geophysics researcher at the University of Cologne in Germany, said in the statement. “The data are particularly good because they were gathered during a period of solar minimum, when there was less noise due to space weather.”

The Swarm mission has already passed its expected end of life, but researchers hope the satellites will remain operational until the next solar minimum, which will come at around 2030.

The study was published in the journal Philosophical Transactions of the Royal Society A in December 2024.

“For the First Time Ever: China’s Tiangong Astronauts Create Oxygen & Rocket Fuel in Orbit!”
For the first time, astronauts aboard China’s Tiangong space station have achieved a groundbreaking feat: converting carbon dioxide and water into oxygen and rocket fuel using artificial photosynthesis. This revolutionary technology mimics how plants create energy and has the potential to transform space exploration forever. Imagine astronauts producing breathable air and spacecraft fuel directly in orbit—no more costly resupply missions from Earth! This efficient, sustainable innovation could enable long-term missions to the Moon, Mars, and beyond, making the dream of a multi-planetary future more achievable than ever. In this video, we’ll explore how this technology works, why it’s so important, and what it means for humanity’s next big leap. Don’t miss out on this exciting update about the future of space exploration!
References:
https://www.scmp.com/news/china/science/article/3295452/chin…ation-leap.
https://interestingengineering.com/space/china-makes-resourc…ace-travel.
https://www.gasworld.com/story/china-turns-co2-into-oxygen-o…7.article/
.
Watch Also:
What is a Super-Earth (TOI-715 b): NASA’s new discovery That Could Support Life.

Did The NASA Hubble Telescope Really Capture Heaven?!
https://www.youtube.com/watch?v=ulPmKGaHXTg.

Step by Step! How SpaceX Assembled and installed Mechazilla in just a Few Weeks?

Russia’s Nuclear Space Weapon: How It Could destroy satellites with massive energy wave.

First Ever Negative Ions Detected on the Moon: Chang’e-6 Urgent News.

Green Hydrogen — The Future Clean Source Of Energy — Part 1

NISAR, an upcoming Earth satellite mission by NASA

NASA, the National Aeronautics and Space Administration, is the United States government agency responsible for the nation’s civilian space program and for aeronautics and aerospace research. Established in 1958 by the National Aeronautics and Space Act, NASA has led the U.S. in space exploration efforts, including the Apollo moon-landing missions, the Skylab space station, and the Space Shuttle program.

A study led by researchers from the University of Virginia has used satellite measurements to show the long-term persistence of air pollution inequalities tied to industrialized swine facilities in Eastern North Carolina.

Using spanning a 15-year period from 2008–2023, the study quantifies disparities in ammonia (NH3)—an air pollutant emitted by swine operations—for Black, Hispanic and Indigenous communities. These inequalities, exacerbated by hot and calm weather conditions, extend for multiple kilometers beyond the immediate vicinity of the facilities, highlighting the widespread impact of this environmental issue.

The study, published in Environmental Science & Technology by Sally Pusede and her team in the Department of Environmental Sciences at UVA, uses data from the Infrared Atmospheric Sounding Interferometer (IASI) aboard multiple polar-orbiting satellites. By analyzing NH3 levels in the atmosphere, UVA researchers were able to show that emissions from industrial swine operations result in systematic environmental inequalities.