Toggle light / dark theme

With the continuous advancements in nano-satellite technology, there has been a significant increase in proposed CubeSat missions for sophisticated space exploration. Due to their cost efficiency, rapid development and ongoing miniaturization of satellite bus systems and scientific payloads, CubeSats offer the potential to increase the range of capabilities of deep space explorations. Missions already on launch manifests such as Mars Cube One, Lunar Flashlight, and NEA Scout will demonstrate the use of CubeSat technology for planetary explorations. CubeSat capabilities are also being expanded for other deep space missions and for the detection technique of Near Earth Objects (NEOs). With the increase in anticipated that CubeSats will increasingly become an attractive option to conduct cost-effective interplanetary missions. This increase in interest and development allows further advancement of Technology Readiness Level (TRL) of the present technology, which can be extrapolated for extra-solar and near interstellar missions. The work presented in this paper addresses the potential utilization for interplanetary and near interstellar missions using technology developed from off-the-shelf components. The paper introduces the current CubeSat technologies, their baselines TRLs, and the requirements needed to conduct such missions. It further presents the feasibility study of the available CubeSat technology to conduct near interstellar mission by the year 2030. The feasibility of different propulsion, communication, electrical and power subsystems with a TRL level of 5 and higher in the next 10 years is evaluated. This paper outlines the fundamental mission and spacecraft architecture required to exit the solar system using miniaturized space system technologies. The analysis and suggestions presented in this paper help recognize the resourcefulness of CubeSat for interplanetary and the edge of the solar system missions.

Read more

Free Satellite WiFi


Elon Musk’s SpaceX wants to launch thousands of satellites into space with the aim of providing super-fast global internet coverage, according to a regulatory filing.

SpaceX – the company on a mission to colonize Mars – outlined plans to put 4,425 satellites into space in a Federal Communications Commission (FCC) filing from earlier this week.

That’s three times the 1,419 satellites that are currently in space, according to the Union of Concerned Scientists, a not-for-profit group made up of scientists across the world.

Read more

Once you get to mach 5+ hypersonic speed, then a scramjet works and it is by far the most efficient type of engine for hypersonic speeds. A scramjet needs some other form of propulsion to get it to Mach 5. As a result, scramjets have become something of a well-studied technology in search of a practical application.

To reach these hypersonic speeds, Michael Smart, professor of hypersonics at the University of Queensland in Brisbane plans to combine an uncrewed scramjet with conventional rockets. He believes his Spartan launch system could radically reduce the costs of blasting satellites into orbit.

“All conventional satellite launch systems use different stages,” says Smart. “There’ll be a first stage rocket that normally gets up to Mach 5 or 6, you’ll have a second scramjet stage that goes two thirds of the way to space and you’ll have a final upper stage that takes the satellite into orbit.”

Read more

Today, SpaceX filed with the FCC to obtain the rights to operate 4,400 satellites to offer internet services from orbit, a plan that was announced last year.

Elon Musk’s trust currently owns 54% of the outstanding stock of SpaceX and has voting control of 78% of the outstanding stock of SpaceX.

Google and Fidelity’s investment valued SpaceX at roughly $15 billion. Therefore, Elon’s shares of SpaceX are worth $8.1 billion.

Read more

China plans to launch its first e-commerce satellite in 2017, with the primary purpose of using satellite data in agriculture.

The plan was announced on Monday during an international aviation and aerospace forum in Zhuhai, Guangdong Province, by the China Academy of Launch Vehicle Technology, China Aerospace Museum and Juhuasuan, an arm of e-commerce giant Alibaba.

“In an era of space economy, the potential of a commercial space industry is immeasurable,” Han Qingping, president of the Chinarocket Co., Ltd, said at the forum.

Read more

PARIS — The European Union’s executive commission on Oct. 26 unveiled a new space strategy that promises public investment to stimulate the creation of space start-up companies.

The Brussels, Belgium-based commission, which acts on behalf of the 28 European Union members — still including Britain for a couple of years — is already the biggest single customer for Europe’s Arianespace launch-service provider and for Europe’s satellite manufacturers.

The EU plans to launch some 30 satellites in the coming decade for the Galileo navigation and Copernicus environment-monitoring programs, which are the major beneficiaries of the commission’s space budget of 12 billion euros ($13.5 billion) between 2014 and 2020.

Read more

Rubik’s-cube-sized CubeSats are a nifty, cheap way for scientists to put a research vessel into space, but they’re limited to orbiting where they’re launched – until now. Los Alamos researchers have created and tested a safe and innovative rocket motor concept that could soon see CubeSats zooming around space and even steering themselves back to Earth when they’re finished their mission.

Consisting of modules measuring 10 × 10 × 11.35 cm (3.9 × 3.9 × 4.5 in), these mini-satellites first launched in 2003, but are currently lacking in propulsion because they’re designed to hitch a ride into space with larger, more expensive space missions. They’re usually deployed along with routine pressurized cargo launches, usually into low orbits that limit the kinds of studies that CubeSats can perform.

This limitation is, of course, frustrating for space researchers. In fact, the National Academy of Science recently identified propulsion as one of the main areas of technology that needs to be developed for CubeSats.

Read more

The Global Positioning System (GPS) is a great navigation aid – unless you lose the signal while negotiating a complicated spaghetti junction. That’s bad enough for conventional cars, but for autonomous vehicles it could be catastrophic, so the University of California, Riverside’s Autonomous Systems Perception, Intelligence, and Navigation (ASPIN) Laboratory under Zak Kassas is developing an alternative navigation system that uses secondary radio signals, such as from cell phone systems and Wi-Fi to either complement existing GPS-based systems or as a standalone alternative that is claimed to be highly reliable, consistent, and tamper-proof.

Today, there are two global satellite navigation systems in operation, the US GPS and the Russian GLONASS, with the European Galileo system set to become fully operational in the next few years, and plans for the Chinese Beidou system to extend globally by 2020. These have revolutionized navigation, surveying, and a dozen other fields, but GPS and related systems still leave much to be desired. By their nature, GPS signals are weak and positions need to be confirmed by several satellites, so built up areas or mountainous areas can make the system useless. In addition, GPS signals can be deliberately or accidentally jammed or spoofed due to insufficient encryption and other protections.

In military circles, various supplementary systems are employed with everything from submarines to foot soldiers also using Inertial Navigation System (INS) that emply accelerometers and compasses to calculate positions from the last good GPS fix, but these only work for a limited time before they start to drift.

Read more