Toggle light / dark theme

Questions to inspire discussion.

🚕 Q: What’s the expected price range for Tesla’s upcoming Robo Taxi? A: Tesla’s Robo Taxi will enter a new price tier under $30,000, significantly increasing sales and profitability due to its lower hardware cost structure.

Tesla’s Expansion in China.

🇹🇳 Q: How is Tesla expanding its Full Self-Driving (FSD) in China? A: Tesla is offering a 30-day free trial of FSD in China, with new software version 13.2.8 for both Hardware 3 and 4, likely rolling out between end of April and early May.

đŸ€ Q: Why is Tesla’s relationship with China important? A: Tesla’s good relationship with China, established 5 years ago without a joint venture, is crucial for success as China benefits from learning Tesla’s FSD perspective and benchmarking against their own vehicles.

💰 Q: How will tariffs affect low-priced vehicles in the US? A: 25% tariffs on imported vehicles will apply to nearly 80% of vehicles priced under $30,000, impacting popular models like Civic and Corolla.

! Elon Musk seems to think that the Tesla Bot will take over many of the boring, repetitive, and dangerous jobs that are fundamental to our economy. Elon believes the Tesla Bot will eventually take over the Tesla vehicles as the company’s primary source of revenue


When Demis Hassabis won the Nobel Prize last year, he celebrated by playing poker with a world champion of chess. Hassabis loves a game, which is how he became a pioneer of artificial intelligence. The 48-year-old British scientist is co-founder and CEO of Google’s AI powerhouse, called DeepMind. We met two years ago when chatbots announced a new age. Now, Hassabis and others are chasing what’s called artificial general intelligence—a silicon intellect as versatile as a human but with superhuman speed and knowledge. After his Nobel and a knighthood from King Charles, we hurried back to London to see what’s next from a genius who may hold the cards of our future.

Demis Hassabis: What’s always guided me and— the passion I’ve always had is understanding the world around us. I’ve always been— since I was a kid, fascinated by the biggest questions. You know, the— meaning of— of life, the— nature of consciousness, the nature of reality itself. I’ve loved reading about all the great scientists who worked on these problems and the philosophers, and I wanted to see if we could advance human knowledge. And for me, my expression of doing that was to build what I think is the ultimate tool for advancing human knowledge, which is— which is AI.

Scott Pelley: We sat down in this room two years ago. And I wonder if AI is moving faster today than you imagined.

This essay advances a speculative yet empirically-grounded hypothesis: that microtubular cytoskeletal structures constitute proto-cognitive architectures in unicellular organisms, thereby establishing an evolutionary substrate for cognition that predates neural systems. Drawing upon converging evidence from molecular biology, quantum biophysics, phenomenological philosophy, and biosemiotic theory, I propose a cytoskeletal epistemology wherein cognition emerges not exclusively from neural networks, but from the dynamic, embodied information-processing capacities inherent in cellular organization itself. This framework challenges neurocentric accounts of mind while suggesting new avenues for investigating the biological foundations of knowing.

Contemporary cognitive science predominantly situates the genesis of mind within neural tissue, tacitly assuming that cognition emerges exclusively from the electrochemical dynamics of neurons and their synaptic interconnections. Yet this neurocentric paradigm, while experimentally productive, encounters both conceptual and empirical limitations when confronted with fundamental questions regarding the biological preconditions for epistemic capacities. As Thompson (2007) observes, “Life and mind share a set of basic organizational properties, and the organizational properties distinctive of mind are an enriched version of those fundamental to life” (p. 128). This suggests a profound continuity between biological and cognitive processes — a continuity that invites investigation into pre-neural substrates of cognition.

The present inquiry examines the hypothesis that the microtubule — a foundational cytoskeletal element ubiquitous across eukaryotic cells — functions not merely as mechanical infrastructure but as an evolutionary precursor to cognitive architecture, instantiating proto-epistemic capacities in unicellular and pre-neural multicellular organisms. This hypothesis emerges at the intersection of multiple research programs, including quantum approaches to consciousness (Hameroff & Penrose, 2014), autopoietic theories of cognition (Maturana & Varela, 1980), and recent advances in cytoskeletal biology (Pirino et al., 2022).

Until now, Google’s Android XR glasses had only appeared in carefully curated teaser videos and limited hands-on previews shared with select publications. These early glimpses hinted at the potential of integrating artificial intelligence into everyday eyewear but left lingering questions about real-world performance. That changed when Shahram Izadi, Google’s Android XR lead, took the TED stage – joined by Nishtha Bhatia – to demonstrate the prototype glasses in action.

The live demo showcased a range of features that distinguish these glasses from previous smart eyewear attempts. At first glance, the device resembles an ordinary pair of glasses. However, it’s packed with advanced technology, including a miniaturized camera, microphones, speakers, and a high-resolution color display embedded directly into the lens.

The glasses are designed to be lightweight and discreet, with support for prescription lenses. They can also connect to a smartphone to leverage its processing power and access a broader range of apps.

From the gritty realities of founding an AI startup to the global AI race and the future of superhuman intelligence, Eric Schmidt, former Google CEO and current CEO of Relativity Space shares hard truths, leadership insights, and a bold vision for AI’s next frontier. Will the US reclaim the lead, or is China set to dominate?

Timestamps:

0:00 Intro.

1:36 Eric Schmidt Introduces himself.

2:06 The Founder’s Journey: Joining Early Stage Company vs. Founding.

4:20 Why Sometimes Is It Better to Join NOT as a Founder?

IN A NUTSHELL đŸ€– The concept of singularity involves AI reaching a level of intelligence that surpasses that of humans. 🚀 Recent advancements in large language models and computing power have sparked debates about the possibility of achieving singularity soon. 🧠 Experts face technical and philosophical challenges, questioning whether AI can truly replicate human intelligence.

A Chinese research team has developed the world’s smallest and lightest known untethered terrestrial-aerial microrobot capable of transforming into various desired shapes, expected to replace humans in performing a wide range of tasks in complex and hazardous environments.

The robot measuring 9 centimeters in length and 25 grams in weight can operate flexibly on land and in the air with a top speed of up to 1.6 meters per second on the ground, according to the research team from Tsinghua University.

The research team has recently developed a thin-film-shaped small-scale actuator that enables microrobots to continuously transform their shape and “lock” into specific configurations — much like a Transformer — enhancing their ability to adapt to different environments.