In 2018, Google DeepMind’s AlphaZero program taught itself the games of chess, shogi, and Go using machine learning and a special algorithm to determine the best moves to win a game within a defined grid. Now, a team of Caltech researchers has developed an analogous algorithm for autonomous robots—a planning and decision-making control system that helps freely moving robots determine the best movements to make as they navigate the real world.
“Our algorithm actually strategizes and then explores all the possible and important motions and chooses the best one through dynamic simulation, like playing many simulated games involving moving robots,” says Soon-Jo Chung, Caltech’s Bren Professor of Control and Dynamical Systems and a senior research scientist at JPL, which Caltech manages for NASA. “The breakthrough innovation here is that we have derived a very efficient way of finding that optimal safe motion that typical optimization-based methods would never find.”
The team describes the technique, which they call Spectral Expansion Tree Search (SETS), in the December cover article of the journal Science Robotics.