Toggle light / dark theme

Off to the races again; hope folks are onboard. Quantum Bio will grow in importance; and you were warned.


Microsoft today announced that they have open sourced Bio Model Analyzer, a cloud-based tool which allows for biologists to model cell interaction and communication. This latest move is one of the many Microsoft Research initiatives which aims to help lab experts use computer science to speed up breakthroughs in cancer research and treatment.

According to the post, the Bio Model Analzyer (BMA) allows for researchers and science to compare the normal processes of healthy cells to the abnormal processes that occur when disease infects the body. Set against more traditional methods, when using computers, researchers can quickly explore many more possibilities than were previously possible. Jasmin Fisher, a Senior researcher in the programming principles and tools group in Microsoft’s Cambridge, U.K explains in the post:

“That, in turn, can speed up research in areas like drug interaction and resistance, and it could eventually provide patients with more personalized and effective cancer treatments… We are trying to change the way research is done on a daily basis in biology.”

Read more

As Geordie Rose was to QC; Jim Al-Khalili is to Quantum Biology. QC and QB will together make a new advance quantum tech world complete as both are needed to advance both the foundation(infrastructure) and the products and services we love and rely on.


What is quantum biology? Philip Ball explains how strange quantum effects take place in the messy world of biology, and how these are behind familiar biological phenomena such as smell, enzymes and bird’s migration.
Subscribe for regular science videos: http://bit.ly/RiSubscRibe

In this guest curated event on quantum biology, Jim Al-Khalili invited Philip Ball to introduce how the mysteries of quantum theory might manifest themselves at the biological level. Here he explains how the baffling yet powerful theory of the baffling yet powerful theory of the subatomic world might play an important role in biological processes.

Jim Al-Khalili is Professor of Theoretical Physics and Professor of Public Engagement in Science at University of Surrey. He is author of several popular science books and appears regularly on radio and television. In 2007, he was awarded the Royal Society Michael Faraday Prize for Science Communication.

This event took place at the Royal Institution on 28 January 2015.

Bohr’s atomic model was utterly revolutionary when it was presented in 1913 but, although it is still taught in schools, it became obsolete decades ago. However, its creator also developed a much wider-ranging and less known quantum theory, the principles of which changed over time. Researchers at the University of Barcelona have now analysed the development in the Danish physicist’s thought — a real example of how scientific theories are shaped.

Most schools still teach the atomic model, in which electrons orbit around the nucleus like the planets do around the sun. The model was proposed more than a century ago by Danish physicist Niels Bohr based on Rutherford’s first model, the principles of classical mechanics and emerging ideas about ‘quantisation’ (equations to apply initial quantum hypotheses to classical physical systems) advanced by Max Planck and Albert Einstein.

As Blai Pié i Valls, a physicist at the University of Barcelona, explains: “Bohr published his model in 1913 and, although it was revolutionary, it was a proposal that did little to explain highly varied experimental results, so between 1918 and 1923 he established a much more wide-ranging, well-informed theory which incorporated his previous model.”

Read more

Surprised it took this long for this article to surface.

Quantum and travel.


Written by Arjun Walia

It’s called quantum entanglement, it’s extremely fascinating and counter to what we believe to be the known scientific laws of the universe, so much so that Einstein himself could not wrap his head around it. Although it’s called “quantum entanglement,” though Einstein referred to it as “spooky action at a distance.”

Recent research has taken quantum entanglement out of the theoretical realm of physics, and placed into the one of verified phenomena. An experiment devised by the Griffith University’s Centre for Quantum Dynamics, led by Professor Howard Wiseman and his team of researchers at the university of Tokyo, recently published a paper in the journal Nature Communications confirming what Einstein did not believe to be real: the non-local collapse of a particle’s wave function. (source)(source), and this is just one example of many.

A purely organic p–n junction is used as the luminescent center in a novel planar device that exhibits a high external quantum efficiency and an extremely low driving voltage.

In recent years, organic LEDs (OLEDs) have become a popular option for creating digital displays. These devices generally consist of three types of semiconductors (i.e., a p-type hole-transport layer, an n-type electron-transport layer, and an emission layer).1–3 The emission layer (normally capable of bipolar transport) provides a platform for carrier capture, exciton generation, and transition, and the luminescent property of an OLED mainly depends on the fluorescence behavior of single-molecule emitters. However, the incorporation of the emission layer within the structure of an OLED causes two energy barriers to be induced at the interfaces with the emission and transport layers. This means that the driving voltages for OLEDs are generally much larger than for traditional inorganic LEDs (with similarly chromatic emission). Moreover, the excitons that are generated at most purely organic emitters have a strong binding energy.

Read more

Nice report published in Jan on.


The mechanism of selectivity in ion channels is still an open question in biology for more than half a century. Here, we suggest that quantum interference can be a solution to explain the selectivity mechanism in ion channels since interference happens between similar ions through the same size of ion channels. In this paper, we simulate two neighboring ion channels on a cell membrane with the famous double-slit experiment in physics to investigate whether there is any possibility of matter-wave interference of ions via movement through ion channels. Our obtained decoherence timescales indicate that the quantum states of ions can only survive for short times, i.e. ≈100 picoseconds in each channel and ≈17–53 picoseconds outside the channels, giving the result that the quantum interference of ions seems unlikely due to environmental decoherence. However, we discuss our results and raise few points, which increase the possibility of interference.

Read more

Photoswitchable molecules are able to isomerize between two metastable forms through light stimuli. Originally being studied by photochemists, this type of molecule has now found a wide range of applications within physics, chemistry and biology. The extensive usage of photochromic molecules is due to the two isomers having fundamentally different physical and chemical properties. The most important attribute of a photoswitch is the photoisomerization quantum yield, which defines the efficiency of the photoisomerization event. Here we show how to determine the photoisomerization quantum yield in the solid state and in solution when taking thermal processes into account. The described method together with provided software allows for rapid and accurate determination of the isomerization process for this important class of molecules.

Read more

Sounds definitely like DARPA could be looking at a more seamless BMI type technology and yes, Quantum Bio and telepathy is involved.


For decades scientists have wondered whether electromagnetic waves might play a role in intra- and inter-cell signaling. Researchers have suggested since the 1960s, for example, that terahertz frequencies emanate from cell membranes, but they’ve lacked the technology and tools to conduct reproducible experiments that could prove whether electromagnetic waves constitute purposeful signals for biological function-or if they’re merely background noise.

With recent advances in technology and modeling, experiments may now be possible to test signaling hypotheses. DARPA’s RadioBio program, announced this week, seeks to establish if purposeful electromagnetic wave signaling between biological cells exists-and if evidence supports that it does, to determine what information is being transferred.

The validity of existing and new electromagnetic biosignaling claims requires an understanding of how the structure and function of microscopic, natural antennas are capable of generating and receiving information in a noisy spectral environment.

Read more