Toggle light / dark theme

A scalable approach to distill quantum features from higher-dimensional entanglement

The operation of quantum technologies relies on the reliable realization and control of quantum states, particularly entanglement. In the context of quantum physics, entanglement entails a connection between particles, whereby measuring one determines the result of measuring the other even when they are distant from each other, and in a way that defies any intuitive explanation.

A key challenge in the development of reliable quantum technologies is that entanglement is highly susceptible to noise (i.e., random interactions with the environment). These interactions with noise can adversely impact this desired quantum state of affairs and, in turn, reduce the performance of quantum technologies.

Researchers at Shandong University in China and National Cheng Kung University in Taiwan recently implemented a key step to experimentally recover hidden quantum correlations from higher-dimensional entangled states.

Improved modeling of the Pockels effect may help advance optoelectronic technology

The use of light signals to connect electronic components is a key element of today’s data communication technologies, because of the speed and efficiency that only optical devices can guarantee. Photonic integrated circuits, which use photons instead of electrons to encode and transmit information, are found in many computing technologies. Most are currently based on silicon—a good solution because it is already used for electronic circuits, but with a limited bandwidth.

An excellent alternative is tetragonal barium titanate (BTO), a ferroelectric perovskite that can be grown on top of silicon and has much better optoelectronic properties. But since this material is quite new in the field of applied optoelectronics, a better comprehension of its quantum properties is needed in order to further optimize it.

A new study by MARVEL scientists published in Physical Review B presents a new computational framework to simulate the optoelectronic behavior of this material, and potentially of other promising ones.

Physicists Capture First-Ever Images of Free-Range Atoms

Free-range atoms, roaming around without restrictions, have been captured on camera for the first time – enabling physicists to take a closer look at long predicted quantum phenomena.

It’s a bit like snapping a shot of a rare bird in your back garden, after a long time of only ever hearing reports of them in the area, and seeing the food in your bird feeder diminish each day. Instead of birdwatching, though, we’re talking about quantum physics.

The US researchers behind the breakthrough carefully constructed an “atom-resolved microscopy” camera system that first puts atoms in a contained cloud, where they roam freely. Then, laser light freezes the atoms in position to record them.

“Faster Than Anything Ever Seen”: Mind-Blowing Speed of Quantum Entanglement Measured for the First Time in Scientific History

IN A NUTSHELL 🔬 Scientists have measured the speed of quantum entanglement for the first time, marking a major milestone in quantum physics. 💡 The study uses attosecond precision to track electron motion, offering unprecedented insight into quantum dynamics. 🔗 Quantum entanglement shows how particles can be interconnected over vast distances, defying traditional physics. 🚀

Physicists discover an unusual chiral quantum state in a topological material

Chirality—the property of an object that is distinct from its mirror image—has long captivated scientists across biology, chemistry, and physics. The phenomenon is sometimes called “handedness,” because it refers to an object possessing a distinct left- or right-handed form. It is a universal quality that is found across various scales of nature, from molecules and amino acids to the famed double-helix of DNA and the spiraling patterns of snail shells.

Can quantum computers handle energy’s hardest problems?

Every week quantum computing hits a new milestone: more qubits, fewer errors, better readout of results. But will these breakthroughs help solve the advanced computational problems facing energy, like how to model energy storage catalysts or ensure power grid reliability? That is what scientists at the National Renewable Energy Laboratory (NREL) want to know.

Working with local quantum companies, an NREL team is developing benchmarks for quantum computers on the problems that are important to energy science. The pursuit of benchmarks will allow NREL and industry to prioritize practical utility for the next generation of quantum software and hardware.

Do Quantum Wavefunctions Actually Collapse?

We are still uncertain about what a wavefunction actually is but recent measurements are starting to make this picture clearer. This problem has been around since the beginning of quantum mechanics. Albert Einstein, Neils Bohr, Werner Heisenberg, Erwin Schrodinger, and many more famous physicists have struggled with this problem but no one has come up with a definitive answer.

In this video, I discuss some of the interpretations of quantum mechanics and how these new measurements change some of our theories.

There are many great videos about interpretations, check out references [6] and [7] if you want to know more.

— References —
[1] https://www.quantamagazine.org/physic
[2] https://www.nature.com/articles/s4156
[3] https://journals.aps.org/prl/abstract

Quantum Interpretations.
[4] https://iep.utm.edu/int-qm/
[5] https://www.scientificamerican.com/ar

Study Introduces an AI Agent That Automates Quantum Chemistry Tasks From Natural Language Prompts

A new study introduces a language-agent framework that translates plain English into quantum chemistry computations, signaling a shift toward more accessible and automated scientific workflows.

Researchers have built an AI system called El Agente Q that integrates large language models (LLMs) with quantum chemistry software to autonomously plan, execute, and explain computational chemistry tasks. The system is capable of understanding general scientific queries, breaking them into step-by-step procedures, selecting the right tools, and solving quantum mechanical problems with minimal human intervention.


A new AI agent uses large language models to autonomously interpret natural language prompts and carry out quantum chemistry computations.

Scientists discover quantum computing in the brain

Kurian’s group believes these large tryptophan networks may have evolved to take advantage of their quantum properties. When cells breathe using oxygen—a process called aerobic respiration—they create free radicals, or reactive oxygen species (ROS). These unstable particles can emit high-energy UV photons, which damage DNA and other important molecules.

Tryptophan networks act as natural shields. They absorb this harmful light and re-emit it at lower energies, reducing damage. But thanks to superradiance, they may also perform this protective function much more quickly and efficiently than single molecules could.

/* */