With its particles in two places at once, quantum theory strains our common sense notions of how the universe should work. But one group of physicists says we can get reality back if we just redefine its foundations.
Category: quantum physics – Page 80
In a continuous pursuit to understand the fundamental laws that govern the universe, researchers have ventured deep into the realms of string theory, loop quantum gravity, and quantum geometry. These advanced theoretical frameworks have revealed an especially compelling concept: the generalized uncertainty principle (GUP).
The observation of quantum modifications to a well-known chemical law could lead to performance improvements for quantum information storage.
The Arrhenius law says that the rate of a chemical reaction should decrease steadily as you increase the energy barrier between initial and final states. Now researchers have found a system that obeys a quantum version of the Arrhenius law, where the rate does not drop smoothly but instead decreases in a staircase pattern [1]. The system is a type of quantum bit (qubit) that is particularly robust against environmental disturbances. The researchers demonstrated that they can take advantage of this quantum effect to improve the qubit’s performance.
Technologies such as quantum computers and quantum cryptography use qubits to store information, and one of the continuing challenges is that uncontrolled environmental effects can change the state of a qubit. The most common solutions require large amounts of hardware, but an alternative method is to use qubits that are more error resistant, such as so-called cat qubits. The information in these qubits is stored in robust combinations of quantum states that resemble the states in Schrödinger’s famous feline thought experiment (see Synopsis: Quantum-ness Put on the Scale).
Researchers from Skoltech, Universitat Politècnica de València, Institute of Spectroscopy of RAS, University of Warsaw, and University of Iceland have demonstrated the spontaneous formation and synchronization of multiple quantum vortices in optically excited semiconductor microcavities.
Thousands of light particles can merge into a type of “super photon” under certain conditions. Researchers at the University of Bonn have now been able to use “tiny nano molds” to influence the design of this so-called Bose-Einstein condensate. This enables them to shape the speck of light into a simple lattice structure consisting of four points of light arranged in quadratic form. Such structures could potentially be used in the future to make the exchange of information between multiple participants tap-proof.
The results have now been published in the journal Physical Review Letters (“Bose-Einstein Condensation of Photons in a Four-Site Quantum Ring”).
By creating indents on the reflective surfaces (shown on the left in an exaggerated form; the reflective surfaceis facing upwards), the researchers were able to imprint a structure ontothe photon condensate (right). (Image: IAP, Universität Bonn)
Diamonds are forever 💎 A team of scientists from UniMelb, RMIT University and The City College of New York were able to observe lightning in a diamond ⚡️ Diamond chips can potentially be used in electronics and are more powerful than silicon. Tap to learn more ➡️
We also don’t yet fully understand how charges flow inside diamond, and how unavoidable impurities and defects affect these electrical properties.
In a recent study with colleagues from the University of Melbourne, RMIT University and the City College of New York, we sought to combine electrical measurements of a diamond optoelectronic device with 3D optical microscopy.
Non-existence of universal maximally entangled isospectral mixed states has implications for research on quantum technologies.
Moiré superlattices, structures that arise when two layers of two-dimensional (2D) materials are overlaid with a small twist angle, have been the focus of numerous physics studies. This is because they have recently been found to host novel fascinating unobserved physical phenomena and exotic phases of matter.
To build light-based quantum technologies, scientists and engineers need the ability to generate and manipulate photons as individuals or a few at a time. To build such quantum photonic logic gates that might be used in an optical quantum computer requires a special medium which allows strong and controlled interactions of just a few photons.
Heat engines, converting heat into useful work, are vital in modern society. With advances in nanotechnology, exploring quantum heat engines (QHEs) is crucial for designing efficient systems and understanding quantum thermodynamics.