Blog

Archive for the ‘quantum physics’ category: Page 769

Jun 3, 2016

“Quantum Entanglement in Space” –A New Global Satellite-Based Quantum Network

Posted by in categories: computing, particle physics, quantum physics, space

“We are reaching the limits of how precisely we can test quantum theory on Earth,” says Daniel Oi at the University of Strathclyde. Researchers from the National University of Singapore (NUS) and the University of Strathclyde, UK, have become the first to test in orbit technology for satellite-based quantum network nodes. With a network that carries information in the quantum properties of single particles, you can create secure keys for secret messaging and potentially connect powerful quantum computers in the future. But scientists think you will need equipment in space to get global reach.

Read more

Jun 2, 2016

Computing’s Search for Quantum Questions

Posted by in categories: computing, quantum physics, robotics/AI

Personally, I cannot wait to see all of the improvements in AI via Quantum technology.


Recent tests show that quantum computers made by D-Wave systems should solve some problems faster than ordinary computers. Researchers have begun to map out exactly which queries might benefit from these quantum machines.

Read more

Jun 2, 2016

Can Dwave Quantum Computers help save finance and prevent future financial meltdowns from flawed models

Posted by in categories: computing, finance, mathematics, quantum physics

The writer is referring to D-Wave (not Dwave) in his article.


Dwave Systems and 1QB Information Technologies Inc. (1QBit), a quantum software firm, and financial industry experts today announced the launch of Quantum for Quants (quantumforquants.org), an online community designed specifically for quantitative analysts and other experts focused on complex problems in finance. Launched at the Global Derivatives Trading and Risk Management conference in Budapest, the online community will allow quantitative finance and quantum computing professionals to share ideas and insights regarding quantum technology and to explore its application to the finance industry. Through this community financial industry experts will also be granted access to quantum computing software tools, simulators, and other resources and expertise to explore the best ways to tackle the most difficult computational problems in finance using entirely new techniques.

“Quantum computers enable us to use the laws of physics to solve intractable mathematical problems,” said Marcos López de Prado, Senior Managing Director at Guggenheim Partners and a Research Fellow at Lawrence Berkeley National Laboratory’s Computational Research Division. “This is the beginning of a new era, and it will change the job of the mathematician and computer scientist in the years to come.”

Continue reading “Can Dwave Quantum Computers help save finance and prevent future financial meltdowns from flawed models” »

Jun 2, 2016

Network security shifting toward machine learning, quantum computing, predicts expert

Posted by in categories: computing, quantum physics, robotics/AI, security

Very true points by Kharam.


At SC Congress Toronto, Evgeniy Kharam, director and network security solutions architect at Herjavec Group predicted that the future network security was in machine learning, quantum computing and the cloud.

Read more

Jun 2, 2016

Experimental test verifies Heisenberg’s measurement uncertainty principle

Posted by in category: quantum physics

(Phys.org)—Werner Heisenberg originally proposed the uncertainty principle in 1927, but his original proposal was somewhat different than how it is interpreted today. As a recent paper in Physical Review Letters explains, Heisenberg’s original statement was about error and disturbance in a measurement process. Over the years, however, Heisenberg’s original proposal has been restated in terms of the uncertainties intrinsic to quantum states. This aspect of the uncertainty principle has been studied extensively with well-developed theories and verified experimentally.

On the other hand, Heisenberg’s original proposal regarding error in the measurement process is not as well understood. In the new paper, a team of researchers led by Professor Jiangfeng Du at the University of Science and Technology of China has reported an experimental test of the measurement aspect of Heisenberg’s uncertainty principle using nuclear-spin qubits.

In his original proposal, Heisenberg predicted a tradeoff between error and disturbance. He suggested that when a gamma-ray microscope measures the position of an electron, the measurement inevitably disturbs the electron’s momentum. The smaller the measurement error, the larger the disturbance, and vice versa. This idea was described qualitatively but a complete quantitative description is still lacking today.

Continue reading “Experimental test verifies Heisenberg’s measurement uncertainty principle” »

Jun 2, 2016

New Evidence That Black Holes May Actually Be 2D Holograms

Posted by in categories: cosmology, quantum physics

A team of theoretical physicists used Loop Quantum Gravity, string theory’s biggest contender, and showed that the calculations are consistent with the idea that black holes have no insides, but that objects are stuck on their surface.

There’s a lot in our universe we don’t completely understand, such as dark matter and dark energy. Indeed, in the bizarre world of quantum physics, ideas are constantly shifting and changing regarding the true nature of the (somewhat mysterious) forces that govern our universe.

This is what’s happening now in the debate over what black holes really are.

Continue reading “New Evidence That Black Holes May Actually Be 2D Holograms” »

Jun 2, 2016

Quantum satellite device tests technology for global quantum network

Posted by in categories: computing, internet, particle physics, quantum physics, space

Another reliable article on the Quantum Internet work.


You can’t sign up for the quantum internet just yet, but researchers have reported a major experimental milestone towards building a global quantum network — and it’s happening in space.

With a network that carries information in the properties of single particles, you can create secure keys for secret messaging and potentially connect powerful quantum computers in the future. But scientists think you will need equipment in space to get global reach.

Continue reading “Quantum satellite device tests technology for global quantum network” »

Jun 2, 2016

First step toward space-based quantum internet

Posted by in categories: internet, quantum physics, space

A quantum node device that might pave the way for a future space-based quantum Internet has been successfully tested for the first time aboard a small satellite.

The device, called SPEQS, has been developed by a team from the National University of Singapore (NUS) and the Glasgow-based University of Strathclyde. It contains technology for creation of the so-called correlated photons, which are a precursor for the better known entangled photons that communicate across large distances.

In an article published in the latest issue of the journal Physical Review Applied, the team led by NUS researcher Alexander Ling described first result of the experiment, which saw the SPEQS system reliably creating and measuring pairs of photons with correlated properties.

Read more

Jun 2, 2016

Behind the Commonwealth Bank’s investment in quantum computing

Posted by in categories: business, computing, finance, government, quantum physics

Excellent story; glad that this bank in Australia is getting prepared for Quantum now instead of later which will be too late for some. Good news is that Wall Street as well as the US Government are getting educated on Quantum Computing. I do hope more and more businesses and institutions start developing their own internal QC expertise so that they are prepared for the switch that is coming across all industries.


The Commonwealth Bank’s decision to contribute millions of dollars to quantum computing research is not just about the significant commercial potential of the technology itself but also about developing its own in-house expertise in the area, according to chief information officer David Whiteing.

The bank last year committed to contributing $10 million over five years to UNSW’s Centre for Quantum Computation and Communication Technology (CQC2T). That was in addition to $5 million it announced in December 2014 that it would put towards the centre.

Continue reading “Behind the Commonwealth Bank’s investment in quantum computing” »

Jun 1, 2016

“Two Worlds of Spacetime” –Physicists Voyage Into the Quantum Foam (Wednesday’s Most Popular)

Posted by in category: quantum physics

“Astronomy has been a tool of discovery since the dawn of civilization. For thousands of years, humans used the stars to navigate and find their place in the universe,” said physicist Eic Perlman on the Florida Institute of Technolgy in an post on NASA’s Chandra X-Ray Observatory blog. “Astronomy made possible the travels of the ancient Polynesians across the Pacific Ocean as well as measurements of the Earth’s size and shape by the ancient Greeks. Today, astronomers search for hints about what the universe was like when the universe was much younger. So imagine, for a second, what life would be like – and how much less we would know about ourselves and the universe – if the microscopic nature of space-time made some of these measurements impossible.”

Our experience of space-time is that of a continuous object, without gaps or discontinuities, just as it is described by classical physics. For some quantum gravity models however, the texture of space-time is “granular” at tiny scales (below the so-called Planck scale, 10–33 cm), as if it were a variable mesh of solids and voids (or a complex foam). One of the great problems of physics today is to understand the passage from a continuous to a discrete description of spacetime: is there an abrupt change or is there gradual transition? Where does the change occur?

The separation between one world and the other creates problems for physicists: for example, how can we describe gravity — explained so well by classical physics — according to quantum mechanics? Quantum gravity is in fact a field of study in which no consolidated and shared theories exist as yet. There are, however, “scenarios”, which offer possible interpretations of quantum gravity subject to different constraints, and which await experimental confirmation or confutation.

Continue reading “‘Two Worlds of Spacetime’ --Physicists Voyage Into the Quantum Foam (Wednesday’s Most Popular)” »