Toggle light / dark theme

Scientists make quantum technology smaller

A way of shrinking the devices used in quantum sensing systems has been developed by researchers at the UK Quantum Technology Hub Sensors and Timing, which is led by the University of Birmingham.

Sensing devices have a huge number of industrial uses, from carrying out ground surveys to monitoring volcanoes. Scientists working on ways to improve the capabilities of these sensors are now using quantum technologies, based on , to improve their sensitivity.

Machines developed in laboratories using quantum technology, however, are cumbersome and difficult to transport, making current designs unsuitable for most industrial uses.

Engineers Built “Giant Atoms” That Enhance Quantum Computers

Users Guide

Ultimately, the MIT engineers hope that their giant atoms lead to a simpler, enhanced form of quantum computers.

“This allows us to experimentally probe a novel regime of physics that is difficult to access with natural atoms,” MIT engineer Bharath Kannan said in a press release. “The effects of the giant atom are extremely clean and easy to observe and understand.”

‘Quantum negativity’ can power ultra-precise measurements

Scientists have found that a physical property called ‘quantum negativity’ can be used to take more precise measurements of everything from molecular distances to gravitational waves.

The researchers, from the University of Cambridge, Harvard and MIT, have shown that can carry an unlimited amount of information about things they have interacted with. The results, reported in the journal Nature Communications, could enable far more precise measurements and power new technologies, such as super-precise microscopes and quantum computers.

Metrology is the science of estimations and measurements. If you weighed yourself this morning, you’ve done metrology. In the same way as is expected to revolutionize the way complicated calculations are done, quantum metrology, using the strange behavior of subatomic particles, may revolutionize the way we measure things.

Solving materials problems with a quantum computer

Quantum computers have enormous potential for calculations using novel algorithms and involving amounts of data far beyond the capacity of today’s supercomputers. While such computers have been built, they are still in their infancy and have limited applicability for solving complex problems in materials science and chemistry. For example, they only permit the simulation of the properties of a few atoms for materials research.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago (UChicago) have developed a method paving the way to using quantum computers to simulate realistic molecules and complex materials, whose description requires hundreds of atoms.

The research team is led by Giulia Galli, director of the Midwest Integrated Center for Computational Materials (MICCoM), a group leader in Argonne’s Materials Science division and a member of the Center for Molecular Engineering at Argonne. Galli is also the Liew Family Professor of Electronic Structure and Simulations in the Pritzker School of Molecular Engineering and a Professor of Chemistry at UChicago. She worked on this project with assistant scientist Marco Govoni and graduate student He Ma, both part of Argonne’s Materials Science division and UChicago.

The Government Is Building an Unhackable Quantum Internet

The U.S. Department of Energy (DoE) has announced a plan to make a quantum internet it says is virtually unhackable. This is definitely a long-term plan that will require new kinds of engineering and technology, not something that will be implemented next year. Let’s take a look at the concept, the plan the DoE has laid out, and how long it all might take.

Within the framework of quantum mechanics, the network proposed here is pretty intuitive. (That’s a big caveat, though!) The report begins with a surprising notion: Although headlines and research have focused on the power of quantum computing, we’re far away from any practical and recognizable computer powered by quantum phenomena. The idea of a quantum network, the DoE says, is far closer to our reach.

🤯 You like quantum. We like quantum. Let’s nerd out together.

Dive Deep Into Hidden World of Quantum States to Find Silicon’s Successor in Race Against Moore’s Law

Discovery by scientists at Berkeley Lab, UC Berkeley could help find silicon’s successor in race against Moore’s Law.

In the search for new materials with the potential to outperform silicon, scientists have wanted to take advantage of the unusual electronic properties of 2D devices called oxide heterostructures, which consist of atomically thin layers of materials containing oxygen.

Scientists have long known that oxide materials, on their own, are typically insulating – which means that they are not electrically conductive. When two oxide materials are layered together to form a heterostructure, new electronic properties such as superconductivity – the state in which a material can conduct electricity without resistance, typically at hundreds of degrees below freezing – and magnetism somehow form at their interface, which is the juncture where two materials meet. But very little is known about how to control these electronic states because few techniques can probe below the interface.

US Just Unveiled Its Blueprint For a “Virtually Unhackable” Quantum Internet

US officials and scientists have begun laying the groundwork for a more secure “virtually unhackable” internet based on quantum computing technology.

At a presentation Thursday, Department of Energy (DOE) officials issued a report that lays out a blueprint strategy for the development of a national quantum internet, using laws of quantum mechanics to transmit information more securely than on existing networks.

The agency is working with universities and industry researchers on the engineering for the initiative with the aim of creating a prototype within a decade.

/* */