Blog

Archive for the ‘quantum physics’ category: Page 7

Dec 13, 2024

Google ‘Willow’ quantum chip has solved a problem the best supercomputer would have taken a quadrillion times the age of the universe to crack

Posted by in categories: quantum physics, supercomputing

Google’s new 105-qubit quantum processor has surpassed a key milestone first proposed in 1995.

Dec 13, 2024

Google unveils ‘mind-boggling’ quantum computing chip | BBC News

Posted by in categories: computing, particle physics, quantum physics

Google has unveiled a new chip which it claims takes five minutes to solve a problem that would currently take the world’s fastest super computers ten septillion – or-1 years – to complete.

The chip is the latest development in a field known as quantum computing — which is attempting to use the principles of particle physics to create a new type of mind-bogglingly powerful computer.

Continue reading “Google unveils ‘mind-boggling’ quantum computing chip | BBC News” »

Dec 13, 2024

Physicists uncover strong light-matter interactions in quantum spin liquids

Posted by in categories: particle physics, quantum physics

Physicists have long theorized the existence of a unique state of matter known as a quantum spin liquid. In this state, magnetic particles do not settle into an orderly pattern, even at absolute zero temperature. Instead, they remain in a constantly fluctuating, entangled state.

This unusual behavior is governed by complex quantum rules, leading to emergent properties that resemble fundamental aspects of our universe, such as the interactions of light and matter. Despite its intriguing implications, experimentally proving the existence of quantum spin liquids and exploring their distinctive properties has been extremely challenging.

In a paper recently published in Nature Physics, an international group of researchers comprised of an experimental team from Switzerland and France and theoretical physicists in Canada and the U.S., including Rice University, have found evidence of this enigmatic quantum spin liquid in a material known as pyrochlore cerium stannate.

Dec 13, 2024

A Physics Discovery So Strange It’s Changing Quantum Theory

Posted by in categories: materials, quantum physics

Theory of quantum anomalous Hall phases in pentalayer rhombohedral graphene moiré structures https://arxiv.org/abs/2311.


MIT physicists surprised to discover electrons in pentalayer graphene can exhibit fractional charge.

New theoretical research from MIT physicists explains how it could work, suggesting that electron interactions in confined two-dimensional spaces lead to novel quantum states, independent of magnetic fields.

Continue reading “A Physics Discovery So Strange It’s Changing Quantum Theory” »

Dec 12, 2024

Quantum Psychology, Biology and Engineering

Posted by in categories: biological, engineering, quantum physics

A radical research program in deep design.

Dec 12, 2024

China develops record-breaking 504-qubit quantum computer Tianyan-504

Posted by in categories: computing, quantum physics

China has reached a new milestone in quantum computing with the development of Tianyan-504, a powerful 504-qubit quantum computer.

The Tianyan-504 quantum computer was developed through collaboration between the China Telecom Quantum Group (CTQG), the Center for Excellence in Quantum Information and Quantum Physics under the Chinese Academy of Sciences, and QuantumCTek, a quantum technology company based in Anhui Province.

Continue reading “China develops record-breaking 504-qubit quantum computer Tianyan-504” »

Dec 12, 2024

Quantum algorithms can break generative AI bottlenecks

Posted by in categories: chemistry, health, information science, quantum physics, robotics/AI, sustainability

Finding a reasonable hypothesis can pose a challenge when there are thousands of possibilities. This is why Dr. Joseph Sang-II Kwon is trying to make hypotheses in a generalizable and systematic manner.

Kwon, an associate professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, published his work on blending traditional physics-based scientific models with to accurately predict hypotheses in the journal Nature Chemical Engineering.

Kwon’s research extends beyond the realm of traditional chemical engineering. By connecting physical laws with machine learning, his work could impact , smart manufacturing, and health care, outlined in his recent paper, “Adding big data into the equation.”

Dec 12, 2024

A Dive into the Thermodynamic Aspects of Quantum Computation

Posted by in categories: computing, employment, quantum physics

It is quite conventional that the working of classical computers is affected immensely by heat and one might have come across this situation in their lives when their computer failed to function properly due to excessive heating.

But what about quantum computers? Do thermodynamical factors influence the workings of a quantum computing device? Well, the answer is yes, quantum computers operate using quantum bits or qubits that essentially are in a superposed state exchanging information in binary code. An interesting fact about qubits is that they not only exchange information using 0 and 1 but also intermediate values between 0 and 1. These qubits are very sensitive, in that excessive heat generation could cause work-related defects which in a sense can cause harm to the device as a whole. Another crucial point is that in order to retrieve significant information from the qubit system, the associated quantum states must be dismantled and this could possibly impact the quantum system heavily in a negative manner as the process would be exothermic.

In recent work, physicists have investigated the thermodynamic effects caused by superconducting quantum systems [1]. The method involves the employment of a Josephson junction which essentially operates on the Josephson effect, an example of macroscopic quantum phenomena wherein a supercurrent flows between two superconductors placed end-to-end or in close proximity to each other. The principal usability of a Josephson junction is to store quantum information. Using superconductors is a plus because it helps enhance the efficiency of the qubits.

Dec 12, 2024

Pete Shadbolt at MIT EmTech: Building the World’s First Useful Quantum Computer

Posted by in categories: quantum physics, supercomputing

Quantum computers hope to excel at solving problems that are too large, complex, or cumbersome for even the most powerful supercomputers, but many hurdles remain before they can be reliably put to commercial use. Here, we share an update on PsiQuantum’s approach, and recent progress towards useful, large-scale machines.

PsiQuantum co-founder \& Chief Scientific Officer Pete Shadbolt presents at the 2024 MIT EmTech conference in Cambridge, MA.

Dec 12, 2024

Crafting Qubits: Harnessing Quantum Mechanics for Computation

Posted by in categories: computing, quantum physics

How do we actually create and manipulate qubits, essential for realizing quantum computation? Chief Scientist of Hardware Technology Development at Quantinuum, Patty Lee, joins Brian Greene to discuss various quantum strategies, their achievements to date and pathways forward.

This program is part of the Big Ideas series, supported by the John Templeton Foundation.

Continue reading “Crafting Qubits: Harnessing Quantum Mechanics for Computation” »

Page 7 of 855First4567891011Last