Toggle light / dark theme

Synthetic magnetic fields steer light on a chip for faster communications

Electrons in a magnetic field can display striking behaviors, from the formation of discrete energy levels to the quantum Hall effect. These discoveries have shaped our understanding of quantum materials and topological phases of matter. Light, however, is made of neutral particles and does not naturally respond to magnetic fields in the same way. This has limited the ability of researchers to reproduce such effects in optical systems, particularly at the high frequencies used in modern communications.

To address this challenge, researchers from Shanghai Jiao Tong University and Sun Yat-Sen University have developed a method for generating pseudomagnetic fields—synthetic fields that mimic the influence of real magnetic fields—inside nanostructured materials known as photonic crystals.

Unlike previous demonstrations, which focused on specific effects such as photonic Landau levels, the new approach allows arbitrary control of how light flows within the material. Their research is published in Advanced Photonics.

Microscopes can now watch materials go quantum with liquid helium

A new specimen holder gives scientists more control over ultra-cold temperatures, enabling the study of how materials acquire properties useful in quantum computers.

Scientists can now reliably chill specimens near absolute zero for over 10 hours while taking images resolved to the level of individual atoms with an . The new capability comes from a liquid-helium-cooled sample holder designed by a team of scientists and engineers at the University of Michigan and Harvard University.

Conventional instruments can usually maintain such an extreme temperature, about-423 degrees Fahrenheit or 20 degrees above absolute zero, for a few minutes, capping out at a few hours. But longer periods of time are needed to take atomic-resolution images of candidate materials for advanced technologies.

Mathematical ‘sum of zeros’ trick exposes topological magnetization in quantum materials

A new study addresses a foundational problem in the theory of driven quantum matter by extending the Středa formula to non-equilibrium regimes. It demonstrates that a superficially trivial “sum of zeros” encodes a universal, quantized magnetic response—one that is intrinsically topological and uniquely emergent under non-equilibrium driving conditions.

Imagine a strange material being rhythmically pushed—tapped again and again by invisible hands. These are periodically driven , or Floquet systems, where energy is no longer conserved in the usual sense. Instead, physicists speak of quasienergy—a looping spectrum with no clear start or end.

When scientists measure how such a system responds to a magnetic field, every single contribution seems to vanish—like adding an infinite list of zeros. And yet, the total stubbornly comes out finite, quantized, and very real.

Measuring the Unruh effect: Proposed approach could bridge gap between general relativity and quantum mechanics

Researchers at Hiroshima University have developed a realistic, highly sensitive method to detect the Unruh effect—a long-predicted phenomenon at the crossroads of relativity and quantum theory. Their novel approach opens new possibilities for exploring fundamental physics and for developing advanced technologies.

The work is published in Physical Review Letters on July 23, 2025.

The Fulling-Davies-Unruh effect, or simply the Unruh effect, is a striking theoretical prediction at the profound intersection of Albert Einstein’s Theory of Relativity and Quantum Theory.

Nano-switch achieves first directed, gated flow of excitons

A new nanostructure acts like a wire and switch that can, for the first time, control and direct the flow of quantum quasiparticles called excitons at room temperature.

The transistor-like switch developed by University of Michigan engineers could speed up or even enable circuits that run on excitons instead of electricity—paving the way for a new class of devices.

Because they have no , excitons have the potential to move without the losses that come with moving electrically charged particles like electrons. These losses drive cell phones and computers to generate heat during use.

Narrow-linewidth laser on a chip sets new standard for frequency purity

A record-breaking development in laser technology could help support the development of smaller, cheaper, more easily-fabricated optical and quantum technologies, its inventors say.

Researchers from the University of Glasgow have designed and built a narrow-linewidth laser on a single, fully integrated microchip that achieves the best performance ever recorded in semiconductor lasers of its type.

It could help overcome many of the barriers which have prevented previous generations of this type of monolithic semiconductor from being more widely adopted.

Clocks created from random events can probe ‘quantumness’ of universe

A newly discovered set of mathematical equations describes how to turn any sequence of random events into a clock, scientists at King’s College London reveal. The paper is published in the journal Physical Review X.

The researchers suggest that these formulas could help to understand how cells in our bodies measure time and to detect the effects of quantum mechanics in the wider world.

Studying these timekeeping processes could have far-reaching implications, helping us to understand proteins with rhythmic movements which malfunction in motor neuron disease or chemical receptors that cells use to detect harmful toxins.

Scientists Grow “Gold Quantum Needles” for Sharper Biomedical Imaging

Potential applications range from biomedical imaging to the conversion of light energy. University of Tokyo researchers Shinjiro Takano, Yuya Hamasaki, and Tatsuya Tsukuda have directly imaged how the geometric arrangement of atoms in gold nanoclusters develops at the very earliest stages of growth

The Structure And Interpretation Of Quantum Programs

Quantum computers promise revolutionary processing power, but realising this potential requires fundamentally new approaches to programming, and a team led by David Wakeham from Torsor Labs now presents a radical departure from conventional methods. The researchers introduce a programming model based on ‘props and ops’, propositions and operators, which replaces the traditional ‘states and gates’ approach with a framework rooted in operator algebra. This innovative system provides a concise and representation-agnostic foundation for quantum programming, effectively rebuilding core concepts like the Bloch sphere from algebraic principles, and offering a novel way to express and manipulate quantum information. By establishing a robust algebraic substrate, the work paves the way for developing high-level quantum languages and, ultimately, practical software applications that can harness the full power of quantum computation.


Researchers have established a new foundation for quantum computing that replaces traditional programming methods with a system based on operator algebra, offering a more versatile and universal approach to building and programming quantum computers.

Ringing black hole confirms Einstein and Hawking’s predictions

A decade ago, scientists first detected ripples in the fabric of space-time, called gravitational waves, from the collision of two black holes. Now, thanks to improved technology and a bit of luck, a newly detected black hole merger is providing the clearest evidence yet of how black holes work—and, in the process, offering long-sought confirmation of fundamental predictions by Albert Einstein and Stephen Hawking.

The new measurements were made by the Laser Interferometer Gravitational-Wave Observatory (LIGO), with analyses led by astrophysicists Maximiliano Isi and Will Farr of the Flatiron Institute’s Center for Computational Astrophysics in New York City. The results reveal insights into the properties of black holes and the fundamental nature of space-time, hinting at how quantum physics and Einstein’s general relativity fit together.

“This is the clearest view yet of the nature of black holes,” says Isi, who is also an assistant professor at Columbia University. “We’ve found some of the strongest evidence yet that astrophysical black holes are the black holes predicted from Albert Einstein’s theory of general relativity.”

/* */