Recent progress on both analog and digital simulations of quantum fields foreshadows a future in which quantum computers could illuminate phenomena that are far too complex for even the most powerful supercomputers.

Graphene is an extraordinary material—a sheet of interlocking carbon atoms just one atom thick that is stable and extremely conductive. This makes it useful in a range of areas, such as flexible electronic displays, highly precise sensors, powerful batteries, and efficient solar cells.
A new study—led by researchers from the University of Göttingen, working together with colleagues from Braunschweig and Bremen in Germany, and Fribourg in Switzerland—now takes graphene’s potential to a whole new level. The team has directly observed “Floquet effects” in graphene for the first time.
This resolves a long-standing debate: Floquet engineering—a method in which the properties of a material are very precisely altered using pulses of light—also works in metallic and semi-metallic quantum materials such as graphene. The study is published in Nature Physics.
The existing bottleneck in efficiently miniaturizing components for quantum computers could be eased with the help of 3D printing.
Quantum computers tackle massive computational challenges by harnessing the power of countless tiny parts working seamlessly together. Trapped ion technology, where charged particles like ions are trapped by manipulating the electromagnetic fields, is one such component.
Current microfabrication techniques fall short when it comes to producing the complex electrode structures with optimal ion confinement suitable for quantum operations.
Researchers Shinjiro Takano, Yuya Hamasaki, and Tatsuya Tsukuda of the University of Tokyo have successfully visualized the geometric structure of growing gold nanoclusters in their earliest stages. During this process, they also successfully grew a novel structure of elongated nanoclusters, which they named gold quantum needles.
Researchers at The City College of New York have shown how a quantum emitter, the nitrogen-vacancy (NV) center in diamond, interacts in unexpected ways with a specially engineered photonic structure when moved around with a scanning tip.
The study, led by Carlos A. Meriles—Martin and Michele Cohen Professor of Physics in the Division of Science—and titled “Emission of Nitrogen–Vacancy Centres in Diamond Shaped by Topological Photonic Waveguide Modes,” appears in the journal Nature Nanotechnology.
What has long been considered a drawback of the NV center—its broad and messy emission spectrum—turns out to enable a new type of coupling that reshapes its light in ways not seen before. This discovery has fundamental importance for quantum information technologies, since such coupling could help overcome longstanding challenges like spectral diffusion and open pathways toward robust spin–photon and spin–spin entanglement on a chip.
Quantum computers promise enormous computational power, but the nature of quantum states makes computation and data inherently “noisy.” Rice University computer scientists have developed algorithms that account for noise that is not just random but malicious. Their work could help make quantum computers more accurate and dependable.
Researchers have demonstrated a new fabrication approach that enables the exploration of a broader range of superconducting materials for quantum hardware.
The study, published in Applied Physics Letters, addresses a long-standing challenge: many promising superconductors, such as transition metal nitrides, carbides, and silicides, are difficult to pattern into functional devices using conventional chemistry-based methods.
By showing that physical patterning provides a viable alternative, the study paves the way to evaluate and harness these materials for high-performing quantum technologies.
Quantum scientists in Innsbruck have taken a major leap toward building the internet of the future. Using a string of calcium ions and finely tuned lasers, they created quantum nodes capable of generating streams of entangled photons with 92% fidelity. This scalable setup could one day link quantum computers across continents, enable unbreakable communication, and even transform timekeeping by powering a global network of optical atomic clocks that are so precise they’d barely lose a second over the universe’s entire lifetime.