Toggle light / dark theme

Time crystals realized in the so-called quasiperiodic regime hold promise for future applications in quantum computing and sensing.

In ordinary crystals, atoms or molecules form a repeating pattern in space. By extension, in quantum systems known as time crystals, particles form a repeating pattern in both space and time. These exotic systems were predicted in 2012 and first demonstrated in 2016 (see Viewpoint: How to Create a Time Crystal). Now Chong Zu at Washington University in St. Louis and his colleagues have experimentally realized a new form of time crystal called a discrete-time quasicrystal [1]. The team suggests that such states could be useful for high-precision sensing and advanced signal processing.

Conventional time crystals are created by subjecting a collection of particles to an external driving force that is periodic in time. Zu and his colleagues instead selected a quasiperiodic drive in the form of a structured but nonrepeating sequence of microwave pulses. The researchers applied this quasiperiodic drive to an ensemble of strongly interacting spins associated with structural defects, known as nitrogen-vacancy centers, in diamond. They then tracked the resulting dynamics of these spins using a laser microscope.

Supersolids are a strange quantum state of matter that combines properties of solids and liquids.

Now they’ve gotten even more mind-bending, as scientists have transformed light itself into a supersolid. It’s a breakthrough that could lead to new quantum and photonic technologies.

Beyond the everyday solids, liquids, gases, and plasmas, an entire zoo of exotic states of matter exists. Long theorized but only recently created, a supersolid has a crystalline structure like a regular solid, but it can also, counterintuitively, flow freely like a fluid.

Physicists in Japan have developed streamlined formulas to measure quantum entanglement, revealing surprising quantum interactions in nanoscale.

The term “nanoscale” refers to dimensions that are measured in nanometers (nm), with one nanometer equaling one-billionth of a meter. This scale encompasses sizes from approximately 1 to 100 nanometers, where unique physical, chemical, and biological properties emerge that are not present in bulk materials. At the nanoscale, materials exhibit phenomena such as quantum effects and increased surface area to volume ratios, which can significantly alter their optical, electrical, and magnetic behaviors. These characteristics make nanoscale materials highly valuable for a wide range of applications, including electronics, medicine, and materials science.

Scientists have devised a way to store and read data from individual atoms embedded in tiny crystals only a few millimeters in size (where 1 mm is 0.04 inches). If scaled up, it could one day lead to ultra-high density storage systems capable of holding petabytes of data on a single disc — where 1 PB is equivalent to approximately 5,000 4K movies.

Encoding data as 1s and 0s is as old as the entire history of computing, with the only difference being the medium used to store this data — moving from vacuum tubes flashing on and off, tiny electronic transistors, or even compact discs (CDs), with pits in the surface representing 1s and smoothness indicating 0.

In research inspired by the principles of quantum mechanics, researchers from Pompeu Fabra University (UPF) and the University of Oxford reveal new findings to understand why the human brain is able to make decisions quicker than the world’s most powerful computer in the face of a critical risk situation. The human brain has this capacity despite the fact that neurons are much slower at transmitting information than microchips, which raises numerous unknown factors in the field of neuroscience.

The research is published in the journal Physical Review E.

It should be borne in mind that in many other circumstances, the human brain is not quicker than technological devices. For example, a computer or calculator can resolve mathematical operations far faster than a person. So, why is it that in critical situations—for example, when having to make an urgent decision at the wheel of a car—the human brain can surpass machines?

Researchers have advanced a decades-old challenge in the field of organic semiconductors, opening new possibilities for the future of electronics. The researchers, led by the University of Cambridge and the Eindhoven University of Technology, have created an organic semiconductor that forces electrons to move in a spiral pattern, which could improve the efficiency of OLED displays in television and smartphone screens, or power next-generation computing technologies such as spintronics and quantum computing.

The semiconductor they developed emits circularly polarized light—meaning the light carries information about the ‘handedness’ of electrons. The internal structure of most inorganic semiconductors, like silicon, is symmetrical, meaning electrons move through them without any preferred direction.

However, in nature, molecules often have a chiral (left-or right-handed) structure: like human hands, are mirror images of one another. Chirality plays an important role in like DNA formation, but it is a difficult phenomenon to harness and control in electronics.

Physics has a problem—their key models of quantum theory and the theory of relativity do not fit together. Now, Dr. Wolfgang Wieland from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) is developing an approach that reconciles the two theories in a problematic area. A recently published paper that was published in Classical and Quantum Gravity gives hope that this could work.

There are four in the universe: gravity, electromagnetism, the weak and the strong interaction. While general relativity describes gravity, deals with the other three forces. This creates a problem: “As early as the 1930s, it was recognized that the two theories do not fit together,” explains Dr. Wieland, who leads a Heisenberg project on this topic at the Chair of Quantum Gravity at FAU.

Usually, this has no major consequences: general relativity is mainly used to calculate the behavior of large masses in the universe. Quantum theory, on the other hand, focuses on the world of the very smallest things. However, to better understand key phenomena such as the Big Bang or , a model is needed that unites both concepts—quantum gravity. General relativity states that all matter in a black hole is united at one tiny point. It is therefore important to understand how gigantic gravitational forces act in the microcosm, although this is where the laws of quantum mechanics actually apply.

Using the Multi-frequency High Field Electron Spin Resonance Spectrometer at the Steady-State High Magnetic Field Facility (SHMFF), researchers observed the first-ever Bose–Einstein condensation (BEC) of a two-magnon bound state in a magnetic material. The facility is in the Hefei Institutes of Physical Science of the Chinese Academy of Sciences and includes a research team from Southern University of Science and Technology, Zhejiang University, Renmin University of China, and the Australian Nuclear Science and Technology Organization.

This discovery was published in Nature Materials.

BEC is a fascinating quantum phenomenon where particles, typically bosons, condense into a single collective state at ultra-low temperatures. While this effect has been seen in cold atoms, it had never been observed in a magnetic system until now.

Researchers at the University of Adelaide have performed the first imaging of embryos using cameras designed for quantum measurements.

The University’s Center of Light for Life academics investigated how to best use ultrasensitive technology, including the latest generation of cameras that can count individual packets of light energy at each pixel, for life sciences.

Center director Professor Kishan Dholakia said the sensitive detection of these packets of light energy, termed photons, is vitally important for capturing in their natural state—allowing researchers to illuminate with gentle doses of light.