Toggle light / dark theme

Error-correction technology to turn quantum computing into real-world power

Ripples spreading across a calm lake after raindrops fall—and the way ripples from different drops overlap and travel outward—is one image that helps us picture how a quantum computer handles information.

Unlike conventional computers, which process digital data as “0 or 1,” quantum computers can process information in an in-between state where it is “both 0 and 1.” These quantum states behave like waves: they can overlap, reinforcing one another or canceling one another out. In computations that exploit this property, states that lead to the correct answer are amplified, while states that lead to wrong answers are suppressed.

Thanks to this interference between waves, a quantum computer can sift through many candidate answers at once. Our everyday computers take time because they evaluate each candidate one by one. Quantum computers, by contrast, can narrow down the answer in a single sweep—earning them the reputation of “dream machines” that could solve in an instant problem that might take hundreds of years on today’s computers.

Making sense of quantum gravity in five dimensions

Quantum theory and Einstein’s theory of general relativity are two of the greatest successes in modern physics. Each works extremely well in its own domain: Quantum theory explains how atoms and particles behave, while general relativity describes gravity and the structure of spacetime. However, despite many decades of effort, scientists still do not have a satisfying theory that combines both into one clear picture of reality.

Most common approaches assume that gravity must also be described using quantum ideas. As physicist Richard Feynman once said, “We’re in trouble if we believe in quantum mechanics but don’t quantize gravity.” Yet quantum theory itself has deep unresolved problems. It does not clearly explain how measurements lead to definite outcomes, and it relies on strange ideas that clash with everyday experience, such as objects seemingly behaving like both waves and particles, and apparent nonlocal connections between distant systems.

These puzzles become even sharper because of Bell’s theorem. This theorem shows that no theory based on ordinary ideas—such as locality, an objective reality, and freely chosen measurements—can fully match the predictions of quantum theory within our usual four-dimensional view of space and time. These quantum predictions have been repeatedly confirmed in tests of entanglement, first discussed by Einstein, Podolsky, and Rosen (EPR). As a result, simple classical explanations limited to ordinary four-dimensional spacetime cannot fully account for what we observe.

Fault-tolerant quantum computing: Novel protocol efficiently reduces resource cost

Quantum computers, systems that process information leveraging quantum mechanical effects, could soon outperform classical computers on some complex computational problems. These computers rely on qubits, units of quantum information that share states with each other via a quantum mechanical effect known as entanglement.

Qubits are highly susceptible to noise in their surroundings, which can disrupt their quantum states and lead to computation errors. Quantum engineers have thus been trying to devise effective strategies to achieve fault-tolerant quantum computation, or in other words, to correct errors that arise when quantum computers process information.

Existing approaches work either by reducing the extra number of physical qubits needed per logical qubit (i.e., space overhead) or by reducing the number of physical operations needed to perform a single logical operation (i.e., time overhead). Effectively tackling both these goals together, which would enable more scalable systems and faster computations, has so far proved challenging.

Metal–metal bonded molecule achieves stable spin qubit state, opening path toward quantum computing materials

Researchers at Kumamoto University, in collaboration with colleagues in South Korea and Taiwan, have discovered that a unique cobalt-based molecule with metal–metal bonds can function as a spin quantum bit (spin qubit)—a fundamental unit for future quantum computers. The findings provide a new design strategy for molecular materials used in quantum information technologies.

The study is published in the journal Chemical Communications.

We Thought This Particle Was Impossible To Measure!

Go to https://ground.news/sabine to get 40% off the Vantage plan and see through sensationalized reporting. Stay fully informed on events around the world with Ground News.

The #1 most-wanted particle in physics is the graviton, a quantum of gravity. If physicists were to prove that gravitons exist, they would unambiguously prove that Einstein’s theory is ultimately wrong and must be replaced by a more complete theory that gives quantum properties to space and time. In a recent paper, a physicist came up with an ingenious experiment that could prove that gravitons do exist. Let’s take a look.

👕T-shirts, mugs, posters and more: ➜ https://sabines-store.dashery.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
👉 Transcript with links to references on Patreon ➜ / sabine.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 📚 Buy my book ➜ https://amzn.to/3HSAWJW #science #sciencenews #physics.
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
📚 Buy my book ➜ https://amzn.to/3HSAWJW

#science #sciencenews #physics

CRISPR vs Aging: What’s Actually Happening Right Now

🧠 VIDEO SUMMARY:
CRISPR gene editing in 2025 is no longer science fiction. From curing rare immune disorders and type 1 diabetes to lowering cholesterol and reversing blindness in mice, breakthroughs are transforming medicine today. With AI accelerating precision tools like base editing and prime editing, CRISPR not only cures diseases but also promises longer, healthier lives and maybe even longevity escape velocity.

0:00 – INTRO — First human treated with prime editing.
0:35 — The DNA Problem.
1:44 – CRISPR 1.0 — The Breakthrough.
3:19 – AI + CRISPR 2.0 & 3.0
4:47 – Epigenetic Reprogramming.
5:54 – From the Lab to the Body.
7:28 – Risks, Ethics & Power.
8:59 – The 2030 Vision.

👇 Don’t forget to check out the first three parts in this series:
Part 1 – “Longevity Escape Velocity: The Race to Beat Aging by 2030″
Part 2 – “Longevity Escape Velocity 2025: Latest Research Uncovered!“
Part 3 – “Longevity Escape Velocity: How AI is making us immortal by 2030!”

📌 Easy Insight simplifies the future — from longevity breakthroughs to mind-bending AI and quantum revolutions.

🔍 KEYWORDS:
longevity, longevity escape velocity, AI, artificial intelligence, quantum computing, supercomputers, simplified science, easy insightm, CRISPR 2025, CRISPR gene editing, CRISPR cures diseases, CRISPR longevity, prime editing 2025, base editing 2025, AI in gene editing, gene editing breakthroughs, gene therapy 2025, life extension 2025, reversing aging with CRISPR, CRISPR diabetes cure, CRISPR cholesterol PCSK9, CRISPR ATTR amyloidosis, CRISPR medical revolution, Easy Insight longevity.

👇 JOIN THE CONVERSATION:

What breaks quantum monogamy? Electron crowding delivers a surprise

Turn up the voltage, and monogamous quantum relationships fall apart in surprising ways.


Are quantum particles polygamous? New experiments suggest some of them abandon long-standing partnerships when conditions get crowded.

Quantum particles do not behave like isolated dots.

They interact, form bonds, and follow strict social rules. One of the most fundamental divides separates fermions and bosons.

Sudden breakups of monogamous quantum couples surprise researchers

Quantum particles have a social life, of a sort. They interact and form relationships with each other, and one of the most important features of a quantum particle is whether it is an introvert—a fermion—or an extrovert—a boson.

Extroverted bosons are happy to crowd into a shared quantum state, producing dramatic phenomena like superconductivity and superfluidity. In contrast, introverted fermions will not share their quantum state under any condition—enabling all the structures of solid matter to form.

But the social lives of quantum particles go beyond whether they are fermions or bosons. Particles interact in complex ways to produce everything we know, and interactions between quantum particles are key to understanding why materials have their particular properties. For instance, electrons are sometimes tightly locked into a relationship with a specific atom in a material, making it an insulator. Other times, electrons are independent and roam freely—the hallmark of a conductor.

/* */