Toggle light / dark theme

Shaping quantum light unlocks new possibilities for future technologies

Researchers from the School of Physics at Wits University, working with collaborators from the Universitat Autònoma de Barcelona, have demonstrated how quantum light can be engineered in space and time to create high-dimensional and multidimensional quantum states. Their work highlights how structured photons—light whose spatial, temporal or spectral properties are deliberately shaped—offer new pathways for high-capacity quantum communication and advanced quantum technologies.

Published as a review article in Nature Photonics, the study surveys rapid progress in techniques capable of creating, manipulating and detecting quantum structured light. These include on-chip integrated photonics, nonlinear optics, and multiplane light conversion, which now form a modern and increasingly powerful toolkit. Together, these advances are bringing structured quantum states closer to real-world applications in imaging, sensing, and quantum networks.

New ‘physics shortcut’ lets laptops tackle quantum problems once reserved for supercomputers and AI

Physicists have transformed a decades-old technique for simplifying quantum equations into a reusable, user-friendly “conversion table” that works on a laptop and returns results within hours.

New state of quantum matter could power future space tech

A UC Irvine team uncovered a never-before-seen quantum phase formed when electrons and holes pair up and spin in unison, creating a glowing, liquid-like state of matter. By blasting a custom-made material with enormous magnetic fields, the researchers triggered this exotic transformation—one that could enable radiation-proof, self-charging computers ideal for deep-space travel.

Artificial intelligence for quantum computing

Quantum computing devices of increasing complexity are becoming more and more reliant on automatised tools for design, optimization and operation. In this Review, the authors discuss recent developments in AI for quantum”, from hardware design and control, to circuit compiling, quantum error correction and postprocessing, and discuss future potential of quantum accelerated supercomputing, where AI, HPC, and quantum technologies converge.

Quantum technology moves from lab to life, but widespread use remains years away

Quantum technology is accelerating out of the lab and into the real world, and a new article argues that the field now stands at a turning point—one that is similar to the early computing age that preceded the rise of the transistor and modern computing.

The article, authored by scientists from University of Chicago, Stanford University, the Massachusetts Institute of Technology, the University of Innsbruck in Austria, and the Delft University of Technology in the Netherlands, offers an assessment of the rapidly advancing field of quantum information hardware, outlining the major challenges and opportunities shaping scalable quantum computers, networks, and sensors. The paper appears in Science.

“This transformative moment in quantum technology is reminiscent of the transistor’s earliest days,” said lead author David Awschalom, the Liew Family Professor of molecular engineering and physics at the University of Chicago, and director of the Chicago Quantum Exchange and the Chicago Quantum Institute.

A solid-state quantum processor based on nuclear spins

Quantum computers, systems that process information leveraging quantum mechanical effects, have the potential of outperforming classical systems on some tasks. Instead of storing information as bits, like classical computers, they rely on so-called qubits, units of information that can simultaneously exist in superpositions of 0 and 1.

Researchers at University Paris-Saclay, the Chinese University of Hong Kong and other institutes have developed a new quantum computing platform that utilizes the intrinsic angular momentum (i.e., spin) of nuclei in tungsten-183 (183 W) atoms as qubits.

Their proposed system, introduced in a paper published in Nature Physics, was found to achieve long coherence times and is compatible with existing superconductor-based quantum information processing platforms.

LHC data confirm validity of new model of hadron production—and test foundations of quantum mechanics

A boiling sea of quarks and gluons, including virtual ones—this is how we can imagine the main phase of high-energy proton collisions. It would seem that particles here have significantly more opportunities to evolve than when less numerous and much “better-behaved” secondary particles spread out from the collision point. However, data from the LHC accelerator prove that reality works differently, in a manner that is better described by an improved model of proton collisions.

A lot happens during high-energy proton-proton collisions. Protons are hadrons, i.e. clusters of partons—quarks and the gluons that bind them together. When protons collide with each other at sufficiently high energies, their quarks and gluons (including the virtual ones, which appear momentarily during interactions) enter into various complex interactions.

Only when they “cool down” do the quarks stick together to form new hadrons, which scatter from the collision area and are recorded in detectors. Intuition therefore suggests that the entropy of the produced hadrons—a quantity describing the number of states in which the particle system can find itself—should be different from that in the parton phase of the collision, when there are many interacting quarks and gluons, and the interactions appear at first glance to be as chaotic as they are dynamic.

New quantum device operates at room temperature for stable qubits

Stanford University researchers say they have developed a nanoscale optical device that could shift the direction of quantum communication.

Unlike today’s quantum computers that operate near absolute zero, this new approach works at room temperature.

The device entangles the spin of photons and electrons, which is essential for transmitting and processing quantum information.

#Quantumcomputing #Innovation #Quantumtechpr #Iyq2025

Navigating The Deep Tech Industrial Revolution with Chuck Brooks.

Link.


Chuck Brooks got his start in cybersecurity at the Department of Homeland Security, as one of the organization’s first hires. He has worked in Congress and other agencies, as well as large companies and cybersecurity firms. He uses experiences to teach students at Georgetown University how to manage change, including the kind posed by quantum tech. In this podcast episode, Chuck and host Veronica Combs discuss digital security threats and how to use AI.

🎧 Tune in here: https://lnkd.in/gMkTjuE6

/* */