Toggle light / dark theme

IBM claims ‘real world’ edge in quantum computing race

Technology veteran IBM on Tuesday laid out a plan to have a “practical” quantum computer tackling big problems before the end of this decade.

Current quantum computers are still experimental and face significant challenges, including high error rates. Companies like IBM, Google, and others are working to build more stable and scalable quantum systems.

Real-world innovations that quantum computing has the potential to tackle include developing better fuels, materials, pharmaceuticals, or even new elements. However, delivering on that promise has always seemed some way off.

First on-chip photonic qubit enables GKP states for error correction at room temperature

Xanadu has achieved a significant milestone in the development of scalable quantum hardware by generating error-resistant photonic qubits on an integrated chip platform. A foundational result in Xanadu’s roadmap, this first-ever demonstration of such qubits on a chip is published in Nature.

This advance builds on Xanadu’s recent announcement of the Aurora system, which demonstrated—for the first time—all key components required to build a modular, networked, and scalable photonic quantum computer. With this latest demonstration of robust generation using silicon-based photonic chips, Xanadu further strengthens the scalability pillar of its architecture.

The quantum states produced in this experiment, known as Gottesman–Kitaev–Preskill (GKP) states, consist of superpositions of many photons to encode information in an error-resistant manner—an essential requirement for future fault-tolerant quantum computers. These states allow to be performed using deterministic, room-temperature-compatible techniques, and they are uniquely well-suited for networking across chips using standard fiber connections.

IBM’s Starling quantum computer: 20,000X faster than today’s quantum computers

IBM has just unveiled its boldest quantum computing roadmap yet: Starling, the first large-scale, fault-tolerant quantum computer—coming in 2029. Capable of running 20,000X more operations than today’s quantum machines, Starling could unlock breakthroughs in chemistry, materials science, and optimization.

According to IBM, this is not just a pie-in-the-sky roadmap: they actually have the ability to make Starling happen.

In this exclusive conversation, I speak with Jerry Chow, IBM Fellow and Director of Quantum Systems, about the engineering breakthroughs that are making this possible… especially a radically more efficient error correction code and new multi-layered qubit architectures.

We cover:
- The shift from millions of physical qubits to manageable logical qubits.
- Why IBM is using quantum low-density parity check (qLDPC) codes.
- How modular quantum systems (like Kookaburra and Cockatoo) will scale the technology.
- Real-world quantum-classical hybrid applications already happening today.
- Why now is the time for developers to start building quantum-native algorithms.

00:00 Introduction to the Future of Computing.
01:04 IBM’s Jerry Chow.
01:49 Quantum Supremacy.
02:47 IBM’s Quantum Roadmap.
04:03 Technological Innovations in Quantum Computing.
05:59 Challenges and Solutions in Quantum Computing.
09:40 Quantum Processor Development.
14:04 Quantum Computing Applications and Future Prospects.
20:41 Personal Journey in Quantum Computing.
24:03 Conclusion and Final Thoughts.

First surface-emitting laser using quantum dots targets optical fiber communications

The National Institute of Information and Communications Technology of Japan, in collaboration with Sony Semiconductor Solutions Corporation (Sony), has developed the world’s first practical surface-emitting laser that employs quantum dot (QD) as the optical gain medium for use in optical fiber communication systems.

This achievement was made possible by NICT’s high-precision technology and Sony’s advanced semiconductor processing technology. The surface-emitting laser developed in this study incorporates nanoscale semiconductor structures called as light-emitting materials. This innovation not only facilitates the miniaturization and reduced power consumption of light sources in optical fiber communications systems but also offers potential cost reductions through and enhanced output via integration.

The results of this research are published in Optics Express.

Out of the string theory swampland: New models may resolve problem that conflicts with dark energy

String theory has long been touted as physicists’ best candidate for describing the fundamental nature of the universe, with elementary particles and forces described as vibrations of tiny threads of energy. But in the early 21st century, it was realized that most of the versions of reality described by string theory’s equations cannot match up with observations of our own universe.

In particular, conventional ’s predictions are incompatible with the observation of dark energy, which appears to be causing our universe’s expansion to speed up, and with viable theories of quantum gravity, instead predicting a vast ‘swampland’ of impossible universes.

Now, a new analysis by FQxI physicist Eduardo Guendelman, of Ben-Gurion University of the Negev, in Israel, shows that an exotic subset of string models—in which the of strings is generated dynamically—could provide an escape route out of the string theory swampland.

Researchers Develop Revolutionary Physics Tool That Exploits Quantum Properties of Light

Scientists have developed a groundbreaking quantum interferometry tool that achieves nanometer-scale precision in challenging environments. Researchers at the University of Illinois, led by Physics Professor Paul Kwiat, have unveiled a groundbreaking tool that is reshaping precision measurement a

“Plasma Chaos Finally Cracked”: This New Tech Unveils the Hidden Turbulence Threatening the Future of Nuclear Fusion

IN A NUTSHELL 🔬 Japanese scientists have developed a groundbreaking technique using quantum mechanics to analyze plasma turbulence. 📊 The new method, called multi-field singular value decomposition, provides clearer insights into the interactions within fusion plasmas. 🌊 The research has implications beyond plasma physics, potentially impacting fields like weather dynamics and social systems. 🔍 By

Mind-Blowing Speed of Quantum Entanglement Measured for the First Time

In a monumental breakthrough, scientists have measured the speed of quantum entanglement for the first time—an achievement that is set to radically transform the way we understand the quantum world. For years, quantum entanglement was thought to be an instantaneous process, but this new research, published in Physical Review Letters, has pushed the boundaries of our knowledge, providing new insights into the quantum realm and setting the stage for revolutionary advances in data security and computational technologies.