Toggle light / dark theme

Startup provides a nontechnical gateway to coding on quantum computers

Quantum computers have the potential to model new molecules and weather patterns better than any computer today. They may also one day accelerate artificial intelligence algorithms at a much lower energy footprint. But anyone interested in using quantum computers faces a steep learning curve that starts with getting access to quantum devices and then figuring out one of the many quantum software programs on the market.

Now qBraid, founded by Kanav Setia and Jason Necaise ‘20, is providing a gateway to quantum computing with a platform that gives users access to the leading and software. Users can log on to qBraid’s cloud-based interface and connect with quantum devices and other computing resources from leading companies like Nvidia, Microsoft, and IBM. In a few clicks, they can start coding or deploy cutting-edge software that works across devices.

“The mission is to take you from not knowing anything about quantum computing to running your first program on these amazing machines in less than 10 minutes,” Setia says. “We’re a one-stop platform that gives access to everything the quantum ecosystem has to offer. Our goal is to enable anyone—whether they’re enterprise customers, academics, or individual users—to build and ultimately deploy applications.”

Physicists achieve high precision in measuring strontium atoms using rubidium neighbor

Having good neighbors can be very valuable—even in the atomic world. A team of Amsterdam physicists was able to determine an important property of strontium atoms, a highly useful element for modern applications in atomic clocks and quantum computers, to unprecedented precision. To achieve this, they made clever use of a nearby cloud of rubidium atoms. The results were published in the journal Physical Review Letters this week.

Strontium. It is perhaps not the most popularly known chemical element, but among a group of physicists it has a much better reputation—and rightfully so.

Strontium is one of six so-called alkaline earth metals, meaning that it shares properties with better-known cousins like magnesium, calcium and radium. Strontium atoms have 38 protons in their nucleus, and a varying number of neutrons—for the variations (or isotopes) of strontium that can be found in nature, either 46, 48, 49 or 50.

Thin-film strontium titanate sets electro-optic performance record at cryogenic temperatures

At 4 degrees Kelvin, most electro-optic materials falter. Nanoelectronics R&D center imec has now successfully engineered thin-film strontium titanate (SrTiO) that delivers record electro-optic performance with low optical loss, pointing to shorter, faster building blocks for quantum devices.

Quantum computers and detectors run at temperatures close to absolute zero. In these , even the best room-temperature materials struggle to control light efficiently. This feature is essential to encode, route, and convert information in electro-optic networks, which at room temperature are used in data and telecom applications, but also increasingly for ultra-low temperature quantum links.

In a new paper published today in Science, imec researchers, in collaboration with KU Leuven and Ghent University, report how they re-engineered a common crystal, (SrTiO), so it behaves with record performance at .

New Quantum Battery Could Revolutionize Energy Storage

Scientists have designed a topological quantum battery that can charge efficiently without losing energy, using the unique properties of quantum mechanics and topology.

Their research suggests dissipation, long considered harmful, might actually boost power in these next-generation batteries.

Quantum Leap in Energy Storage.

Engineers achieve record 31% efficiency in red quantum LEDs for enhanced display color and brightness

A research team led by the School of Engineering of The Hong Kong University of Science and Technology (HKUST) has made significant advances in quantum rod light-emitting diodes (QR-LEDs), setting record-high efficiency level for red QR-LEDs. This innovation is poised to revolutionize next-generation display and lighting technologies, offering smartphone and television users a vibrant and enhanced visual experience. The research is published in the journal Advanced Materials.

LEDs have been widely used in for decades. Recent developments in have given rise to quantum dot LEDs (QD-LEDs) and QR-LEDs. QD-LEDs offer superior color purity (color vividness) and higher brightness compared to current mainstream LEDs. However, outcoupling efficiency has now become the primary obstacle, as it sets a fundamental ceiling for external quantum efficiency (EQE), thereby hindering any further performance improvements.

Quantum rods, on which QR-LEDs are based, are a type of elongated anisotropic nanocrystals with unique optical properties that can be engineered to optimize the light emission direction and ultimately improve outcoupling efficiency. However, QR-LEDs encounter two significant technical challenges: first, the ratio of emitted to absorbed photons (photoluminescence quantum yield) is relatively low after the material absorbs photons; second, there is a substantial leakage current due to poor thin-film quality.

Quantum light breakthrough could transform technology

Scientists have achieved a breakthrough in light manipulation by using topological insulators to generate both even and odd terahertz frequencies through high-order harmonic generation (HHG). By embedding these exotic materials into nanostructured resonators, the team was able to amplify light in unprecedented ways, confirming long-theorized quantum effects. This discovery opens the door to new terahertz technologies with vast implications for ultrafast electronics, wireless communication, and quantum computing.

H. P. Lovecraft

What if H.P. Lovecraft didn’t just imagine the Old Ones… what if he documented them?

In this speculative science analysis of SCP-4315: S.C.P. Lovecraft, we explore a Foundation case that blurs the line between fiction and physics — where imagination itself becomes a containment hazard. Discover how stories can bend probability, how consciousness shapes reality, and why Providence might be the thinnest spot between worlds.

We’ll unpack the Quantum Fictionalization Hypothesis, the Dreamlands as a collective cognitive field, and the terrifying idea that the human mind might be the real breach site.

If you love the SCP Foundation, cosmic horror, or mind-bending science philosophy, this is your next rabbit hole.

🔬 Topics Covered:

Lovecraft as Vector Zero.

Global initiative advances next-generation light sensors based on emerging materials

A global team of experts from academia and industry has joined forces in a landmark Consensus Statement on next-generation photodetectors based on emerging light-responsive materials, which could accelerate innovative applications across health care, smart homes, agriculture, and manufacturing.

Professor Vincenzo Pecunia, head of the Sustainable Optoelectronics Research Group (www.sfu.ca/see/soe), has led this global initiative culminating in the publication of a Consensus Statement in Nature Photonics. Featured on the journal’s cover, the paper provides a unified framework for characterizing, reporting, and benchmarking emerging light-sensing technologies. These guidelines could catalyze the adoption of such sensors across a wide range of applications, enhancing quality of life, productivity, and sustainability.

Light sensors, also known as photodetectors, are devices that convert light into electrical signals. They are at the heart of countless smart devices and represent a valued at over $30 billion, reflecting both their ubiquity and economic significance. Emerging photodetectors—including those based on organic semiconductors, perovskites, , and two-dimensional materials—could take this field even further by enabling ultrathin, flexible, stretchable, and lightweight sensors. These next-generation photodetectors promise lower costs, enhanced performance, and unique functionalities, paving the way for applications that were previously impossible.

/* */