Toggle light / dark theme

10x increase in atom array size boosts China’s quantum leap

Chinese researchers unveil 10x larger atom array for next-gen quantum processors.


Scientists in China have achieved a significant breakthrough in advancing quantum physics.

A team of researchers has developed the largest array of atoms for quantum computing.

The key component for a quantum computer is reportedly capable of creating arrays 10 times larger than previous systems.

Scientists Now Propose that the Far Away Galaxies JWST Spotted Could be from Another Universe

Head to https://squarespace.com/territory to save 10% off your first purchase of a website or domain using code TERRITORY

Become a member today:
/ @territoryspace.

Some scientists now propose that our universe might have been born inside a massive black hole within a larger parent cosmos. In their model, the universe before ours followed the same laws of physics we know today, expanding for billions of years before gravity overcame that outward push. Space began to contract, galaxies moved closer, and the cosmos collapsed toward extreme densities. Instead of ending in a singularity where physics breaks down, quantum effects pushed back against gravity, halting the collapse and triggering a cosmic rebound. That bounce could have launched our own universe’s expansion, making the Big Bang not the true beginning, but a continuation.

This idea draws on the Pauli Exclusion Principle and degeneracy pressure, which in smaller-scale examples prevent white dwarfs and neutron stars from collapsing indefinitely. The same resistance, applied on a universe-wide scale, could stop total collapse inside a black hole. Simulations suggest such a process could occur without invoking exotic new particles or forces. In this framework, the formation of our universe is a purely gravitational event, governed by the physics we already understand, just operating under extreme conditions beyond what we have directly observed.

One striking prediction is that ancient relics from the parent universe could have survived the bounce. These might include primordial black holes or neutron stars that predate our own cosmos. If detected, especially in the early universe, they could serve as evidence that a cosmic bounce occurred. The James Webb Space Telescope’s discovery of unexpectedly massive galaxies soon after the Big Bang could align with this idea, as such galaxies may have formed more easily if early black holes were already present to seed them.

Recent JWST findings on how galaxies spin across the universe may also fit the model. If confirmed, these patterns could point toward a shared origin and support the possibility that we live inside a black hole. While the concept remains controversial, it offers a potential bridge between general relativity and quantum mechanics, challenging the assumption that singularities are inevitable and suggesting that the life cycle of universes may be far more connected than we thought.

The first experimental realization of quantum optical skyrmions in a semiconductor QED system

Skyrmions are localized, particle-like excitations in materials that retain their structure due to topological constraints (i.e., restrictions arising from properties that remain unchanged under smooth deformations). These quasiparticles, first introduced in high-energy physics and quantum field theory, have since attracted intense interest in condensed matter physics and photonics, owing to their potential as robust carriers for information storage and manipulation.

Researchers at Sun Yat-sen University and Tianjin University recently reported the first experimental realization of single-photon quantum skyrmions (i.e., localized light structures) in a semiconductor cavity quantum electrodynamics (QED) system. Their paper, published in Nature Physics, could open new possibilities for the study of quantum light-matter interactions, while also contributing to the advancement of photonic quantum devices.

“Our work was motivated by the longstanding challenge of realizing topological photonic structures—specifically skyrmions—at the quantum level,” Ying Yu, co-senior author of the paper, told Phys.org.

Using sound to remember quantum information 30 times longer

While conventional computers store information in the form of bits, fundamental pieces of logic that take a value of either 0 or 1, quantum computers are based on qubits. These can have a state that is simultaneously both 0 and 1. This odd property, a quirk of quantum physics known as superposition, lies at the heart of quantum computing’s promise to ultimately solve problems that are intractable for classical computers.

Many existing quantum computers are based on superconducting electronic systems in which electrons flow without resistance at extremely low temperatures. In these systems, the quantum mechanical nature of electrons flowing through carefully designed resonators creates superconducting qubits.

These qubits are excellent at quickly performing the logical operations needed for computing. However, storing information—in this case quantum states, mathematical descriptors of particular quantum systems—is not their strong suit. Quantum engineers have been seeking a way to boost the storage times of quantum states by constructing so-called “quantum memories” for superconducting qubits.

The shape of the universe revealed through algebraic geometry

How can the behavior of elementary particles and the structure of the entire universe be described using the same mathematical concepts? This question is at the heart of recent work by the mathematicians Claudia Fevola from Inria Saclay and Anna-Laura Sattelberger from the Max Planck Institute for Mathematics in the Sciences, recently published in the Notices of the American Mathematical Society.

Mathematics and physics share a close, reciprocal relationship. Mathematics offers the language and tools to describe physical phenomena, while physics drives the development of new mathematical ideas. This interplay remains vital in areas such as and cosmology, where advanced mathematical structures and physical theory evolve together.

In their article, the authors explore how algebraic structures and geometric shapes can help us understand phenomena ranging from particle collisions such as happens, for instance, in particle accelerators to the large-scale architecture of the cosmos. Their research is centered around . Their recent undertakings also connect to a field called positive geometry—an interdisciplinary and novel subject in mathematics driven by new ideas in and cosmology.

Customized moiré patterns achieved using stacked metal-organic framework layers

When two mesh screens or fabrics are overlapped with a slight offset, moiré patterns emerge as a result of interference caused by the misalignment of the grids. While these patterns are commonly recognized as optical illusions in everyday life, their significance extends to the nanoscale, such as in materials like graphene, where they can profoundly influence electronic properties.

This phenomenon opens new avenues for advancements in areas like superconductivity and quantum effects. Traditionally, controlling the length scales of moiré patterns has been challenging due to the fixed nature of atomic structures, which limits the ability to fine-tune .

A research team, led by Professor Wonyoung Choe at Ulsan National Institute of Science and Technology (UNIST), South Korea, has demonstrated, for the first time, the ability to precisely control over moiré periods by stacking (MOFs) layers—crystalline materials composed of metal clusters linked by .

Molecular hybridization achieved through quantum vacuum manipulation

Interactions between atoms and molecules are facilitated by electromagnetic fields. The bigger the distance between the partners involved, the weaker these mutual interactions are. In order for the particles to be able to form natural chemical bonds, the distance between them must usually be approximately equal to their diameter.

Using an which strongly alters the , scientists at the Max Planck Institute for the Science of Light (MPL) have succeeded for the first time in optically “bonding” several molecules at greater distances. The physicists are thus experimentally creating synthetic states of coupled molecules, thereby establishing the foundation for the development of new hybrid light-matter states. The study is published in the journal Proceedings of the National Academy of Sciences.

Atoms and molecules have clearly defined, discrete energy levels. When they are combined to form a , the energy states change. This process is referred to as molecular hybridization and is characterized by the overlap of electron orbitals, i.e., the areas where electrons typically reside. However, at a scale of a few nanometers, the interaction becomes so weak that molecules are no longer able to communicate with each other.

Scientists Discover Mysterious “Quantum Echo” in Superconductors

Quantum computing. The effect reveals and manipulates hidden quantum states.

Researchers from the U.S. Department of Energy’s Ames National Laboratory and Iowa State University have identified an unusual “quantum echo” in a superconducting material. This finding offers new understanding of quantum behavior that could be applied to future quantum sensing and computing systems.

Is Your Quantum Computer Faking It? Physicists Unveil a “Quantum Lie Detector”

A new test confirms deep quantum behavior in large-scale systems, including multipartite correlations. Is it possible to verify whether a large quantum system genuinely follows the unusual principles of quantum mechanics, or merely appears to do so? In a groundbreaking experiment, physicists from

/* */