Blog

Archive for the ‘physics’ category: Page 211

Feb 14, 2020

Study uncovers new electronic state of matter

Posted by in category: physics

A research team led by professors from the University of Pittsburgh Department of Physics and Astronomy has announced the discovery of a new electronic state of matter.

Jeremy Levy, a distinguished professor of condensed matter , and Patrick Irvin, a research associate professor are coauthors of the paper “Pascal conductance series in ballistic one-dimensional LaAIO3/SrTiO3 channels.” The research focuses on measurements in one-dimensional conducting systems where electrons are found to travel without scattering in groups of two or more at a time, rather than individually.

Continue reading “Study uncovers new electronic state of matter” »

Feb 13, 2020

The ESA is about to turn one of its spacecraft into a fireball

Posted by in categories: physics, solar power, space, sustainability

Next week, the European Space Agency is going to jettison a cubesat called Qarman from the International Space Station and watch it burst into a fireball as it reenters Earth’s atmosphere—all on purpose.

What’s the mission: Qarman (short for “QubeSat for Aerothermodynamic Research and Measurements on Ablation”) is a shoebox-sized experiment meant to help researchers better understand the physics at play when objects plummet into the planet’s atmosphere and burn up. Qarman was brought up to the ISS in December during a cargo resupply mission. On February 17, it will be cast back out into space and begin slowly drifting toward Earth before entering the atmosphere and burning up in about six months.

Tell me more: Qarman has four solar-cell-covered panels that are designed to increase atmospheric drag and hasten reentry. Its nose is made from a special kind of cork that’s typically used in thermal protection systems on spacecraft. Ground testing shows that when the cork heats up, it chars and flakes away a bit at a time. The Qarman team is interested in learning how this process works during reentry.

Feb 12, 2020

Your decision-making ability is a superpower physics can’t explain

Posted by in category: physics

In a universe that unthinkingly follows the rules, human agency is an anomaly. Can physics ever make sense of our power to change the physical world at will?

Feb 12, 2020

Classical time crystals could exist in nature, say physicists

Posted by in categories: computing, physics

OmO.


Computer simulations show coupled oscillators behave as “activated time crystals”.

Feb 9, 2020

Metamaterial: Mail armor inspires physicists

Posted by in categories: mathematics, mobile phones, physics

Circa 2017


The Middle Ages certainly were far from being science-friendly: Whoever looked for new findings off the beaten track faced the threat of being burned at the stake. Hence, the contribution of this era to technical progress is deemed to be rather small. Scientists of Karlsruhe Institute of Technology (KIT), however, were inspired by medieval mail armor when producing a new metamaterial with novel properties. They succeeded in reversing the Hall coefficient of a material.

The Hall effect is the occurrence of a transverse electric voltage across an electric conductor passed by current flow, if this conductor is located in a . This effect is a basic phenomenon of physics and allows to measure the strength of magnetic fields. It is the basis of magnetic speed sensors in cars or compasses in smartphones. Apart from measuring magnetic fields, the Hall effect can also be used to characterize metals and semiconductors and in particular to determine charge carrier density of the material. The sign of the measured Hall voltage allows conclusions to be drawn as to whether in the semiconductor element carry positive or negative charge.

Continue reading “Metamaterial: Mail armor inspires physicists” »

Feb 8, 2020

Graphene: The magic material

Posted by in categories: materials, physics

Graphene is an allotropic form of carbon and posses some of the unique properties that are making this compound stand out of all other allotropic compounds of carbon. The compound was discovered in modern ages by two scientists Andre Geim and Konstantin Novoselov from the University of Manchester, UK. After its initial discovery the compound soon began to make impact on every field of life and in recognition to their work they were awarded a physics noble prize in 2010. Graphene has unique physical and chemical properties and is much lighter, flexible and strong than many previously existing compounds.

Feb 4, 2020

Lasers etch a ‘perfect’ solar energy absorber

Posted by in categories: nanotechnology, physics, solar power, sustainability

The University of Rochester research lab that recently used lasers to create unsinkable metallic structures has now demonstrated how the same technology could be used to create highly efficient solar power generators.

In a paper in Light: Science & Applications, the lab of Chunlei Guo, professor of optics also affiliated with Physics and the Material Sciences Program, describes using powerful femto-second pulses to etch with nanoscale structures that selectively absorb light only at the solar wavelengths, but not elsewhere.

Continue reading “Lasers etch a ‘perfect’ solar energy absorber” »

Feb 4, 2020

Curl-free magnetic fields for stellarator optimization

Posted by in category: physics

O.o.


This paper describes a new and efficient method of defining an annular region of a curl-free magnetic field with specific physics and coil properties that can be used in stellarator design. Three statements define the importance:

Codes can follow an optimized curl-free initial state to a final full-pressure equilibrium. The large size of the optimization space of stellarators.

Approximately fifty externally-produced distributions of magnetic field, makes success in finding a global optimum largely determined by the starting point.

Continue reading “Curl-free magnetic fields for stellarator optimization” »

Feb 3, 2020

Garrett Lisi on “The Portal”, Ep. #015 — My Arch-nemesis, Myself. (with host Eric Weinstein)

Posted by in categories: alien life, employment, mathematics, physics

Complex cognitive dissonance disorder guaranteed. 😬.


Garrett Lisi, the so called “Surf Bum with a Theory of Everything (or T.O.E.)”, is a PhD theoretical physicist who has refused to be captured by the theoretical physics community. By making shrewd investments, he has avoided holding meaningful employment for his entire adult life. Instead, he lives in Maui and travels the world chasing the perfect wave.

Continue reading “Garrett Lisi on ‘The Portal’, Ep. #015 — My Arch-nemesis, Myself. (with host Eric Weinstein)” »

Feb 2, 2020

Perspective: A review on memristive hardware for neuromorphic computation

Posted by in categories: information science, physics, robotics/AI

If you are interested in mind uploading, then I have a research paper for you to consider. One of the serious issues with mind uploading is the computer substrate. Simulating the brain will require a new and incredible computing capability. New techniques and new hardware are going to be required to make it practical. Of course, there is currently zero demand for mind uploading hardware, so the market is not going to provide this capability. However, there is incredible market demand for cutting edge hardware for machine learning and artificial intelligence. And it turns out that one potential technique for artificial intelligence simulates the way that the brain works: neuromorphic computing. And there is a relatively new type of electronic component that seems to mimic some of the functions of a brain’s neuron: the memristor. Memristors are relatively new, having only been fabricated for the first time by HP in 2008. So I am trying to keep up with the latest developments in memristive technology.

Here are some excerpts from the paper:

“…Artificial Neural Network (ANN) algorithms offer fast computations by mimicking the neuronal network of brains. A weight matrix is used in neural networks (NNs) for parallel processing that makes computing faster…The memristor has attracted much attention because of its potential to have linear multilevel conductance states for vector-matrix multiplication (output = weight × input), corresponding to parallel processing…”

Continue reading “Perspective: A review on memristive hardware for neuromorphic computation” »