Toggle light / dark theme

The history of the Universe thus far has certainly been eventful, marked by the primordial forging of the light elements, the birth of the first stars and their violent deaths, and the improbable origin of life on Earth. But will the excitement continue, or are we headed toward the ultimate mundanity of equilibrium in a so-called heat death? In The Janus Point, Julian Barbour takes on this and other fundamental questions, offering the reader a new perspective—illustrated with lucid examples and poetically constructed prose—on how the Universe started (or more precisely, how it did not start) and where it may be headed. This book is an engaging read, which both taught me something new about meat-and-potatoes physics and reminded me why asking fundamental questions can be so fun.

Barbour argues that there is no beginning of time. The Big Bang, he maintains, was just a very special configuration of the Universe’s fundamental building blocks, a shape he calls the Janus point. As we move away from this point, the shape changes, marking the passage of time. The “future,” he argues, lies in both directions, hence the reference to Janus, the two-faced Roman god of beginnings and transitions.

Barbour illustrates his main points with a deceptively simple model known as the three-body problem, wherein three masses are subject to mutual gravitational attraction. In this context, the Janus point occurs when all three masses momentarily occupy the same point, in what is called a total collision. The special shape at the Janus point, explains Barbour, is an equilateral triangle, which is his model’s version of the Big Bang. I found this imagery helpful when trying to understand the more abstract, and necessarily less technical, application of this concept to general relativity.

The observation of a chemical reaction at the molecular level in real time is a central theme in experimental chemical physics. An international research team has captured roaming molecular fragments for the first time. The work, under the supervision of Heide Ibrahim, research associate at the Institut national de la recherche scientifique (INRS), was published in the journal Science.

The research group of the Énergie Matériaux Télécommunications Research Centre of INRS, with support of Professor François Légaré, has used the Advanced Laser Light Source (ALLS). They have succeeded in shooting the first molecular film of “roamers”—hydrogen fragments, in this case—that orbit around HCO fragments) during a chemical reaction by studying the photo-dissociation of formaldehyde, H2CO.

Researchers at Oregon State University are making key advances with a new type of optical sensor that more closely mimics the human eye’s ability to perceive changes in its visual field.

The sensor is a major breakthrough for fields such as image recognition, robotics and artificial intelligence. Findings by OSU College of Engineering researcher John Labram and graduate student Cinthya Trujillo Herrera were published today in Applied Physics Letters.

Previous attempts to build a human-eye type of device, called a retinomorphic sensor, have relied on software or complex hardware, said Labram, assistant professor of electrical engineering and computer science. But the new sensor’s operation is part of its fundamental design, using ultrathin layers of perovskite semiconductors—widely studied in recent years for their solar energy potential—that change from strong electrical insulators to strong conductors when placed in light.

For now, it looks like our best bet for going interstellar is to rely on robotic spacecraft that are optimized for speed.


For countless generations, the idea of traveling to an extrasolar planet has been the stuff of dreams. In the current era of renewed space exploration, interest in interstellar travel has understandably been rekindled. However, beyond the realm of science fiction, interstellar space travel remains a largely theoretical matter.

Between the sheer expense involved, the need for technological developments to happen first, and the nature of spacetime itself, sending people to another star system is something that is not likely to happen for a long time – if ever. But in spite of the challenges, the hope remains.

The Voyager probes have detected an entirely new kind of electron burst outside the solar system.

It is the first time this “unique physics” have been detected by a spacecraft, and could allow for new breakthroughs in our understanding of the “interstellar medium”, or the space between the stars.

The two Voyager spacecraft were launched by NASA more than 40 years ago, with the aim of flying to the far reaches of our solar system. They have now gone even further than that, reaching interstellar space, and exploring the gaps between the stars, giving us the first glimpses of what it might be like in that mysterious zone.

Wherever you have fluid, there you can also find vortex rings.

Now, scientists have found vortex rings somewhere fascinating — inside a tiny pillar made of a magnetic material, the gadolinium-cobalt intermetallic compound GdCo2.

If you’ve seen smoke rings, or bubble rings under water, you’ve seen vortex rings: doughnut-shaped vortices that form when fluid flows back on itself after being forced through a hole.

Circa 1997


Berkeley — An ultrasensitive, superfluid gyroscope developed by physicists at UC Berkeley has the potential to surpass today’s most sensitive devices for measuring absolute rotation or spin.

In a paper in this week’s issue of Nature, physics professor Richard Packard and his colleagues, graduate students Keith Schwab and Niels Bruckner, report a proof-of-principle demonstration of the new device.

Their prototype superfluid gyroscope already is quite sensitive and they believe its sensitivity will eventually surpass that of the ring laser gyroscope, a highly sensitive device used in advanced commercial aircraft inertial guidance systems. Packard’s immediate goal is to create a version with a sensitivity 10,000 times greater than the team has achieved to date.