Toggle light / dark theme

New double neutron star millisecond pulsar discovered

An international team of astronomers reports the discovery of a rare double neutron star millisecond pulsar. The newfound binary pulsar, designated PSR J1325−6253, consists of two neutron stars orbiting one another every 1.8 days. The finding is detailed in a paper published April 14 on arXiv.org.

The most rapidly rotating pulsars, those with rotation periods below 30 milliseconds, are known as (MSPs). It is assumed that they are formed in when the initially more massive component turns into a neutron star that is then spun-up due to accretion of matter from the secondary star.

Some pulsars consist of two (dubbed double neutron star systems—DNS). They are one of the most important classes of objects used to test and understand numerous astrophysical and fundamental physics phenomena, including in the strong-field regime.

Upcoming satellite mission may ‘see’ how early universe cooled

As the early universe cooled shortly after the Big Bang, bubbles formed in its hot plasma, triggering gravitational waves that could be detectable even today, a new study suggests.

For some time, physicists have speculated that a phase transition took place in the early universe shortly after the Big Bang. Phase transition is a change of form and properties of matter that usually accompanies temperature changes such as the evaporation of water into vapor or the melting of metal. In the young and fast expanding universe, something similar likely took place as the plasma, which was filling the space at that time, cooled down.

Gravitational Waves Should Permanently Distort Space-Time

The first detection of gravitational waves in 2016 provided decisive confirmation of Einstein’s general theory of relativity. But another astounding prediction remains unconfirmed: According to general relativity, every gravitational wave should leave an indelible imprint on the structure of space-time. It should permanently strain space, displacing the mirrors of a gravitational wave detector even after the wave has passed.

Since that first detection almost six years ago, physicists have been trying to figure out how to measure this so-called “memory effect.”

“The memory effect is absolutely a strange, strange phenomenon,” said Paul Lasky, an astrophysicist at Monash University in Australia. “It’s really deep stuff.”

Topological synchronization of chaotic systems

Can we find order in chaos? Physicists have shown, for the first time that chaotic systems can synchronize due to stable structures that emerge from chaotic activity. These structures are known as fractals, shapes with patterns which repeat over and over again in different scales of the shape. As chaotic systems are being coupled, the fractal structures of the different systems will start to assimilate with each other, taking the same form, causing the systems to synchronize.

If the systems are strongly coupled, the structures of the two systems will eventually become identical, causing complete synchronization between the systems. These findings help us understand how synchronization and can emerge from systems that didn’t have these properties to begin with, like chaotic systems and .

One of the biggest challenges today in physics is to understand chaotic systems. Chaos, in physics, has a very specific meaning. Chaotic systems behave like random systems. Although they follow deterministic laws, their dynamics still will change erratically. Because of the well-known “butterfly effect” their future behavior is unpredictable (like the weather system, for example).

Revolutionary images of the birth of crystals

Josh SeehermanI don’t think he’s wrong.

Art ToegemannIt’s adjusting to users sharing a password.

Shubham Ghosh Roy shared a link.


At the interface between chemistry and physics, the process of crystallization is omnipresent in nature and industry. It is the basis for the formation of snowflakes but also of certain active ingredients used in pharmacology. For the phenomenon to occur for a given substance, it must first go through a stage called nucleation, during which the molecules organize themselves and create the optimal conditions for the formation of crystals. While it has been difficult to observe pre-nucleation dynamics, this key process has now been revealed by the work of a research team from the University of Geneva (UNIGE). The scientists have succeeded in visualizing this process spectroscopically in real time and on a micrometric scale, paving the way to the design of safer and more stable active substances. These results can be found in the Proceedings of the National Academy of Sciences (PNAS).

Crystallization is a chemical and physical process used in many fields, from the pharmaceutical industry to food processing. It is used to isolate a gaseous or liquid substance in the form of crystals. However, this phenomenon is not unique to industry; it is ubiquitous in nature and can be seen, for example, in snowflakes, coral or kidney stones.

For crystals to form from substances, they must first go through a crucial stage called nucleation. It is during this first phase that the molecules begin to arrange themselves to form “nuclei,” stable clusters of molecules, which leads to the development and growth of . This process occurs stochastically, meaning it is not predictable when and where a nucleus form. “Until now, scientists have been struggling to visualize this first stage at the molecular level. The microscopic picture of crystal nucleation has been under intense debate. Recent studies suggest that molecules seem to form some disordered organization before the formation of nuclei. Then how does the crystalline order emerge from them? That is a big question,” explains Takuji Adachi, assistant professor in the Department of Physical Chemistry at the UNIGE Faculty of Science.

Innovative New Magneto-Electric Transistor Could Cut 5% From World’s Digital Energy Budget

A new spin on one of the 20th century’s smallest but grandest inventions, the transistor, could help feed the world’s ever-growing appetite for digital memory while slicing up to 5% of the energy from its power-hungry diet.

Following years of innovations from the University of Nebraska–Lincoln’s Christian Binek and University at Buffalos Jonathan Bird and Keke He, the physicists recently teamed up to craft the first magneto-electric transistor.

Along with curbing the energy consumption of any microelectronics that incorporate it, the team’s design could reduce the number of transistors needed to store certain data by as much as 75%, said Nebraska physicist Peter Dowben, leading to smaller devices. It could also lend those microelectronics steel-trap memory that remembers exactly where its users leave off, even after being shut down or abruptly losing power.

New transistor could cut 5% from world’s digital energy budget

A new spin on one of the 20th century’s smallest but grandest inventions, the transistor, could help feed the world’s ever-growing appetite for digital memory while slicing up to 5% of the energy from its power-hungry diet.

Following years of innovations from the University of Nebraska–Lincoln’s Christian Binek and University at Buffalo’s Jonathan Bird and Keke He, the physicists recently teamed up to craft the first magneto-electric transistor.

Along with curbing the energy consumption of any microelectronics that incorporate it, the team’s design could reduce the number of transistors needed to store certain data by as much as 75%, said Nebraska physicist Peter Dowben, leading to smaller devices. It could also lend those microelectronics steel-trap memory that remembers exactly where its users leave off, even after being shut down or abruptly losing power.

New Photovoltaic Cell Makes Electricity From Thermal Radiation

A new PV module makes electricity from thermal radiation. Imagine that.


The electromagnetic spectrum is comprised of thousands upon thousands of frequencies. Sound and light are all part of the spectrum, as are the frequencies that make radio and television broadcasts possible. Today’s solar panels harvest light waves from a small part of the EM spectrum and turn them into electricity, but there are many other frequencies like thermal radiation that could someday stimulate new kinds of photovoltaic cells to generate electricity as well.

Researchers at Stanford have recently published a study in the journal Applied Physics Letters that describes a new type of cell that converts thermal radiation into electricity. When the sun goes down, living organisms and physical structures like buildings, road, and sidewalks radiate heat back into the atmosphere. We call this radiational cooling and it is those electromagnetic waves the Stanford researchers say can be put to work making electricity.