Blog

Archive for the ‘particle physics’ category: Page 563

Dec 17, 2015

China’s dark-matter satellite launches era of space science

Posted by in categories: cosmology, particle physics, science

“The detector could help to clear up some mysteries. In 2013, the AMS announced it had seen hints of dark matter but so far it has detected too few high-energy particles to say for sure. Though DAMPE lacks the equipment to resolve the conundrum directly, it could reveal if the signal is caused by a different astrophysical source, such as pulsars, says Capell.

Although it will collect fewer incoming photons, DAMPE is better at pinpointing their energy than are existing γ-ray telescopes, such as NASA’s Fermi-LAT, says Miguel Sanchez-Conde, a physicist at the Oskar Klein Centre for Cosmoparticle Physics in Stockholm. This capability should allow DAMPE to see sharp spikes in radiation predicted by some dark-matter models.”

Read more

Dec 16, 2015

Did we just discover a new subatomic particle? Scientists are being super cautious

Posted by in category: particle physics

With hints of a new subatomic particle, physics is entering the unknown.

Read more

Dec 16, 2015

Team adds to quantum computing toolkit with mixed-atom logic operations

Posted by in categories: computing, particle physics, quantum physics

Physicists at the National Institute of Standards and Technology (NIST) have added to their collection of ingredients for future quantum computers by performing logic operations—basic computing steps—with two atoms of different elements. This hybrid design could be an advantage in large computers and networks based on quantum physics.

The NIST experiment, described in the Dec. 17 issue of Nature, manipulated one magnesium and one beryllium ion (charged atom) confined in a custom trap (see photo). The scientists used two sets of laser beams to entangle the two ions—establishing a special quantum link between their properties—and to perform two types of logic operations, a controlled NOT (CNOT) gate and a SWAP gate. The same issue of Nature describes similar work with two forms of performed at the University of Oxford.

“Hybrid quantum computers allow the unique advantages of different types of quantum systems to be exploited together in a single platform,” said lead author Ting Rei Tan. “Many research groups are pursuing this general approach. Each ion species is unique, and certain ones are better suited for certain tasks such as memory storage, while others are more suited to provide interconnects for data transfer between remote systems.”

Read more

Dec 16, 2015

Supercharged LHC finds hints of entirely new particle

Posted by in category: particle physics

Two separate teams of physicists working with the Large Hadron Collider in Switzerland have identified signs of a new fundamental particle of nature. While hypotheses abound as to what exactly this particle could be — if it exists at all — the most popular opinion seems to be that it’s a heavier version of the Higgs boson, the particle that explains why other particles have mass.

“I don’t think there is anyone around who thinks this is conclusive,” one of the researchers, Kyle Cranmer from New York University, told The New York Times. “But it would be huge if true.”

After a hiatus of more than two years, the LHC was fired up again in June to continue smashing particles together — this time at record-breaking energy levels of around 13 trillion electron volts. (In case you’re wondering, an electron volt is a unit of energy equal to approximately 1.602×10-19 joules, and 6.5 trillion electron volts is twice the energy level used to detect the Higgs boson for the first time in 2012.)

Read more

Dec 14, 2015

World’s most sensitive dark matter detector gets better

Posted by in categories: cosmology, particle physics

LEAD, S.D. [Brown University] — The Large Underground Xenon (LUX) dark matter experiment, which operates nearly a mile underground at the Sanford Underground Research Facility (Sanford Lab) in the Black Hills of South Dakota, has already proven itself to be the most sensitive dark matter detector in the world. Now, a new set of calibration techniques employed by LUX scientists has again dramatically improved its sensitivity.

Researchers with LUX are looking for WIMPs, weakly interacting massive particles, which are among the leading candidates for dark matter. “It is vital that we continue to push the capabilities of our detector in the search for the elusive dark matter particles,” said Rick Gaitskell, professor of physics at Brown University and co-spokesperson for the LUX experiment. “We have improved the sensitivity of LUX by more than a factor of 20 for low-mass dark matter particles, significantly enhancing our ability to look for WIMPs.”

The new research is described in a paper submitted to Physical Review Letters and posted to ArXiv. The work re-examines data collected during LUX’s first three-month run in 2013, and helps to rule out the possibility of dark matter detections at low-mass ranges where other experiments had previously reported potential detections.

Read more

Dec 13, 2015

A multiverse hiding in the Large Hadron Collider

Posted by in categories: cosmology, particle physics

Physicists will be looking for mini black holes when the Large Hadron Collider restarts this month. It’s impossible for the LHC to generate any sort of black hole that would be remotely unsafe, but this theory suggests that microscopic black holes that vanish almost instantly could be produced from the high-power particle collisions in the LHC.

Read more

Dec 12, 2015

Scientists Create Most Expensive Material on Earth, Costs $4.2 Billion per Ounce

Posted by in categories: materials, mobile phones, particle physics, robotics/AI, transportation

$4.2 billion per ounce. That’s how much the most expensive material on Earth costs. Priced at £100m per gram, the most expensive material on Earth is made up of “endohedral fullerenes,” a cage of carbon atoms containing nitrogen atoms. It could help us make atomic clocks and accurate autonomous cars.


Current atomic clocks are the size of rooms. This material could allow us to make atomic clocks that fit in your smartphone.

Read more

Dec 11, 2015

German plasma success raises nuclear fusion hopes

Posted by in categories: nuclear energy, particle physics

A German nuclear fusion experiment has produced a special super-hot gas which scientists hope will eventually lead to clean, cheap energy.

The helium plasma — a cloud of loose, charged particles — lasted just a tenth of a second and was about one million degrees Celsius.

It was hailed as a breakthrough for the Max Planck Institute’s stellarator — a chamber whose design differs from the tokamak fusion devices used elsewhere.

Read more

Dec 7, 2015

Tiny dark matter stars would harbour particles that act as one

Posted by in categories: cosmology, particle physics

A certain dark matter candidate could clump into stars where it would behave like the Borg race in Star Trek – and this might make it observable.

Read more

Dec 3, 2015

Australian Physicists Prove Time Travel is Possible

Posted by in categories: particle physics, quantum physics, time travel

Scientists from the University of Queensland have used photons (single particles of light) to simulate quantum particles travelling through time. The research is cutting edge and the results could be dramatic!

Their research, entitled “Experimental simulation of closed timelike curves “, is published in the latest issue of Nature Communications. The grandfather paradox states that if a time traveler were to go back in time, he could accidentally prevent his grandparents from meeting, and thus prevent his own birth.

However, if he had never been born, he could never have traveled back in time, in the first place. The paradoxes are largely caused by Einstein’s theory of relativity, and the solution to it, the Gödel metric.

Read more