Researchers predict the existence of a class of particles that behave differently from those already known.
Category: particle physics – Page 5
Our data-driven world demands more—more capacity, more efficiency, more computing power. To meet society’s insatiable need for electronic speed, physicists have been pushing the burgeoning field of spintronics.
Traditional electronics use the charge of electrons to encode, store and transmit information. Spintronic devices utilize both the charge and spin-orientation of electrons. By assigning a value to electron spin (up=0 and down=1), spintronic devices offer ultra-fast, energy-efficient platforms.
To develop viable spintronics, physicists must understand the quantum properties within materials. One property, known as spin-torque, is crucial for the electrical manipulation of magnetization that’s required for the next generation of storage and processing technologies.
An international team of chemists has successfully created methylenedistibiranes, which are three-membered rings that have two antimony atoms and one carbon atom. In their paper published in the Journal of the American Chemical Society, the group describes how they were able to make the rings using just a three-step process.
Methylenedistibiranes are generally used as intermediaries due to their ability to promote selective nucleophilic substitution, resulting in the creation of diantimonyl anions. Chemists have been wanting to be able to create them because it is difficult to use natural elements due to orbital overlap. The achievement by the team is noteworthy because making similar rings with heavier pnictogen elements like antimony and bismuth has proven to be challenging due to changes in orbital overlap trends and energies.
To create the three-membered rings, the research team first synthesized diazadistiboylidenes using [3+2]-cycloaddition between distibene and diazoolefins, which are five-membered rings that have dual antimony, nitrogen and carbon atoms. The resulting stiboylidene served as an intermediary to promote the substitution of a species with bonds formed during donation of electron pairs. The researchers note that it was a surprise to them that the reaction worked as well as it did, since there are few examples of small ring formation with more than one antimony atom.
Harnessing molecular connections: unlocking long-lasting quantum entanglement.
Quantum entanglement—the mysterious connection that links particles no matter the distance between them—is a cornerstone for developing advanced technologies like quantum computing and precision measurement tools. While significant strides have been made in controlling simpler particles such as atoms, extending this control to more complex systems like molecules has remained challenging due to their intricate structures and sensitivity to their surroundings.
In a groundbreaking study, researchers have achieved long-lived quantum entanglement between pairs of ultracold polar molecules using a highly controlled environment known as “magic-wavelength optical tweezers.” These tweezers manipulate molecules with extraordinary precision, stabilizing their complex internal states, such as vibrations and rotations, while enabling detectable, fine-scale interactions.
The team successfully created a “Bell state,” a hallmark of quantum entanglement, with pairs of molecules. While some minor errors reduced the initial fidelity of the entangled state, correcting for these issues revealed that the entanglement could persist for remarkably long times—measured in seconds. This is a significant achievement, as second-scale lifetimes are exceptional in the quantum realm.
This breakthrough has far-reaching implications. Long-lived molecular entanglement could enhance quantum sensing technologies, provide new avenues for exploring chemical reactions at ultracold temperatures, and expand the potential of molecules as quantum bits (qubits) in simulations and memory storage for quantum computing. By unlocking the ability to precisely control and entangle molecules, scientists are paving the way for novel applications across quantum science, leveraging the rich internal dynamics of molecular systems.
A team of researchers has discovered a new way to control the magnetic behavior of quantum materials using applied voltages. Specifically, the material lanthanum strontium manganite (LSMO), which is magnetic and metallic at low temperatures but non-magnetic and insulating when relatively warm, can be influenced by voltage.
The work is published in the journal Nano Letters.
Quantum materials like LSMO are materials that possess special properties because of the rules of quantum mechanics. Researchers discovered that applying voltage to LSMO in its magnetic phase causes the material to split into regions with distinct magnetic properties. The magnetic properties of these regions depend on the applied voltage. This is important because normally, magnetic properties don’t respond to voltage.
CERN discovers antihyperhelium-4, the heaviest antimatter particle to date.
Scientists at CERN’s Large Hadron Collider have discovered the heaviest antimatter particle ever observed: antihyperhelium-4.
This exotic particle, the antimatter counterpart of hyperhelium-4, contains two antiprotons, an antineutron, and an antilambda particle. The breakthrough offers insights into the extreme conditions of the early universe and sheds light on the baryon asymmetry problem — why our universe is dominated by matter despite matter and antimatter being created in equal amounts during the Big Bang.
The discovery was made using lead-ion collisions at the LHC, recreating the hyper-hot environment of the newborn universe. Machine learning models analyzed the data, identifying antihyperhelium-4 particles and precisely measuring their masses.
While the experiment confirmed that matter and antimatter are created in equal portions, the mystery of what tipped the cosmic balance remains unsolved. With ongoing upgrades to the LHC, more groundbreaking discoveries in antimatter research could be on the horizon.
A new analysis of data from the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) reveals fresh evidence that collisions of even very small nuclei with large ones might create tiny specks of a quark-gluon plasma (QGP). Scientists believe such a substance of free quarks and gluons, the building blocks of protons and neutrons, permeated the universe a fraction of a second after the Big Bang.
RHIC’s energetic smashups of gold ions—the nuclei of gold atoms that have been stripped of their electrons—routinely create a QGP by “melting” these nuclear building blocks so scientists can study the QGP’s properties.
Physicists originally thought that collisions of smaller ions with large ones wouldn’t create a QGP because the small ion wouldn’t deposit enough energy to melt the large ion’s protons and neutrons. But evidence from PHENIX has long suggested that these small collision systems generate particle flow patterns that are consistent with the existence of tiny specks of the primordial soup, the QGP.
A joint research team from Hefei Institutes of Physical Science of the Chinese Academy of Sciences has successfully developed a continuous cryogenic pellet injection system for tokamak fueling. This innovative system addresses key technical challenges associated with cryogenic ice formation, pellet cutting, and launching.
Cryogenic pellet injection is a state-of-the-art technique in fusion research. It involves condensing hydrogen isotopic gases into solid ice pellets, which are then accelerated and injected into plasma. This method allows for deep particle injection and high fueling efficiency, making it crucial for the future of fusion reactors.
It is recognized as a critical fueling technology for next-generation fusion devices, including the International Thermonuclear Experimental Reactor (ITER), the China Fusion Engineering Test Reactor (CFETR), and the European Demonstration Fusion Reactor (EU-DEMO).
Deep down, the particles and forces of the universe are a manifestation of exquisite geometry.
By A. Garrett Lisi & James Owen Weatherall
Modern physics began with a sweeping unification: in 1687 Isaac Newton showed that the existing jumble of disparate theories describing everything from planetary motion to tides to pendulums were all aspects of a universal law of gravitation. Unification has played a central role in physics ever since. In the middle of the 19th century James Clerk Maxwell found that electricity and magnetism were two facets of electromagnetism. One hundred years later electromagnetism was unified with the weak nuclear force governing radioactivity, in what physicists call the electroweak theory.
Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like neuromorphic computing.