Toggle light / dark theme

Tiny particles from distant galaxies have caused plane accidents, election interference and game glitches. This video is sponsored by Brilliant. The first 200 people to sign up via https://brilliant.org/veritasium get 20% off a yearly subscription.

This video was inspired by the RadioLab Podcast “Bit Flip” https://ve42.co/BF — they’re brilliant science storytellers.

A Huge thanks to Dr Leif Scheick, Calla Cofield and the JPL Media Relations Team.

Thanks to Col Chris Hadfield. Check out his book: https://chrishadfield.ca/books/

Quantum radar was proposed as a solution more than a decade ago. Some quantum technologies, such as the entanglement of subatomic particles, could in theory boost the sensitivity of a radar.


Quantum particles in a man-made electromagnetic storm bounced back after hitting stealth object, increasing chance of detection, according to Tsinghua University team.

Graphene, hexagonally arranged carbon atoms in a single layer with superior pliability and high conductivity, could advance flexible electronics according to a Penn State-led international research team. Huanyu “Larry” Cheng, Dorothy Quiggle Career Development Professor in Penn State’s Department of Engineering Science and Mechanics (ESM), heads the collaboration, which recently published two studies that could inform research and development of future motion detection, tactile sensing and health monitoring devices.

Investigating how laser processing affects graphene form and function

Several substances can be converted into carbon to create graphene through . Called laser-induced graphene (LIG), the resulting product can have specific properties determined by the original material. The team tested this process and published their results in SCIENCE CHINA Technological Sciences.

Silvia Musolino defended her Ph.D. on new theoretical insights in quantum physics by studying gases at the lowest temperatures consisting of many atoms.

A practical way to study is provided by gases that have extremely low density and consist of many , often more than one hundred thousand, cooled down to temperatures close to the absolute zero. Silvia Musolino studied different types of interactions between these atoms, providing new pathways for future research on new technologies such as quantum computers.

Quantum mechanical laws govern the physics at the atomic scale and is distinguished by , which deals mainly with we can see, hear, or touch. However, even quantum mechanics influences our daily life. Transistors, which are crucial components of electronic devices, are based on quantum mechanical effects. Moreover, quantum mechanics paves the way for new technologies that may strongly impact our lives, such as quantum computers.

Delta Galil Industries, Ltd., a textile manufacturer of branded and private label apparel, is setting up a strategic partnership with Israeli startup Sonovia, a maker of textiles with sustainable and antimicrobial properties, to pilot the use of new fabrics for its product lines. Under the agreement, Sonovia and its machinery manufacturing partner, Brückner Textile Machinery, will install an ultrasonic fabric-finishing applicator at Delta Galil’s innovation center in Karmiel, Israel, to pilot the application of new, eco-responsible fabric finishes offering antimicrobial and anti-odor protection and other traits to products Delta manufactures for its global customers. Delta Galil Industries, founded in 1,975 is a maker of men and women’s underwear, bras, socks, baby clothing, leisurewear and nightwear. The brands it supplies its products for include Schiesser, Eminence, Athena and PJ Salvage. To date, Sonovia has developed two applications for its technology: an anti-bacterial, anti-odor and anti-viral application, and a spray to make textiles water-repellent.


The Ramat Gan, Israel-based startup, founded in2013by Shay Herchcovici and Joshua Herchcovici, uses a patented nanotechnology process developed at Israel’s Bar-Ilan University to embed particles, compounds, and molecules of desired properties directly into textiles, creating a fabric that retains its properties through multiple washings.

The company’s partnership with Delta Galil “constitutes a significant landmark” in Sonovia’s path to commercialize its technology and strengthens Delta Galil’s position as a specialist in high-performance, sustainable manufacturing innovation, the statement said.

“This strategic agreement with Delta Galil constitutes a vote of confidence in Sonovia’s eco-friendly, performance fabric-finishing technology from one of the world’s leading manufacturers of activewear and apparel,” said Sonovia’s chairman and CEO Joshua Herchcovici.

Circa 2019


An international team of physicists have created what they’re calling the world’s smallest engine. How small is it? The entire engine is a single calcium ion, making it around 10 billion times smaller than a car engine.

The experimental engine was conceived by an international team led by Professor Ferdinand Schmidt-Kaler and Ulrich Poschinger of Johannes Gutenberg University in Mainz, Germany. The engine is electrically charged, which makes it easy to trap using electric fields. The moving parts of the engine are the ion’s “intrinsic spin.” On an atomic level, spin is a measurement of an atom’s angular momentum.

Within the engine, spin is used to capture and convert heat absorbed from laser beams into oscillations, or vibrations, of the trapped ion. The vibrations act as a flywheel and its energy is placed into units called “quanta,” predicted by quantum mechanics.

New material maintains borophene ’s electronic properties, offers new advantages.

For the first time, Northwestern University engineers have created a double layer of atomically flat borophene, a feat that defies the natural tendency of boron to form non-planar clusters beyond the single-atomic-layer limit.

Although known for its promising electronic properties, borophene — a single-atom.

Quantum mechanics generally refers to the wave-like properties of things that are commonly considered to be particles, such as electrons. This article discusses evidence of a quantum mechanical switching function that is performed by strictly biological structures—ferritin protein layers that are found in cells including neural tissue.

Many scientists are investigating quantum biology, which is the application of quantum mechanics to investigate biological functions. It has recently been used to answer a number of previously unanswered questions, such as the mechanisms behind photosynthesis and the way birds can perceive magnetic fields. These quantum biological effects generally involve electrons hopping or tunneling over distances of several nanometers, behavior that is incompatible with particles but which makes sense with waves.

Ferritin is a spherical iron storage protein that is found in plants and animals. Early studies of ferritin to look for quantum mechanical effects were conducted at cryogenic temperatures, because it was thought that biological structures were too “warm and wet” to exhibit such effects. Those studies were somewhat inconclusive. But when ferritin was subsequently electrically tested at room temperature, it was discovered that electron tunneling was occurring.