Toggle light / dark theme

KISS: A New Way To Easily Produce Large, Clean 2D Materials

Nearly two decades have passed since the advent of graphene.

Graphene is an allotrope of carbon in the form of a single layer of atoms in a two-dimensional hexagonal lattice in which one atom forms each vertex. It is the basic structural element of other allotropes of carbon, including graphite, charcoal, carbon nanotubes, and fullerenes. In proportion to its thickness, it is about 100 times stronger than the strongest steel.

Quantum Frustration Leads to Fundamental Physics Discovery: A New Phase of Matter

A team of physicists, including University of Massachusetts assistant professor Tigran Sedrakyan, recently announced in the journal Nature that they have discovered a new phase of matter. Called the “chiral bose-liquid state,” the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Under everyday conditions, matter can be a solid, liquid, or gas. But once you venture beyond the everyday—into temperatures approaching absolute zero.

Absolute zero is the theoretical lowest temperature on the thermodynamic temperature scale. At this temperature, all atoms of an object are at rest and the object does not emit or absorb energy. The internationally agreed-upon value for this temperature is −273.15 °C (−459.67 °F; 0.00 K).

Qubit Quest Takes a Topological Turn

The compelling feature of this new breed of quasiparticle, says Pedram Roushan of Google Quantum AI, is the combination of their accessibility to quantum logic operations and their relative invulnerability to thermal and environmental noise. This combination, he says, was recognized in the very first proposal of topological quantum computing, in 1997 by the Russian-born physicist Alexei Kitaev.

At the time, Kitaev realized that non-Abelian anyons could run any quantum computer algorithm. And now that two separate groups have created the quasi-particles in the wild, each team is eager to develop their own suite of quantum computational tools around these new quasiparticles.

Large Hadron Collider may be closing in on the universe’s missing antimatter

Physicists at the Large Hadron Collider (LHC) are closing in on an explanation for why we live in a universe of matter and not antimatter.

Matter and antimatter are two sides of the same coin. Every type of particle has an anti-particle, which is its equal and opposite. For instance, the antimatter equivalent of a negatively charged electron is a positively charged positron.

World’s first cosmic-ray GPS can detect underground movement

A team of scientists have successfully demonstrated the world’s first cosmic-ray GPS to detect movement underground and in volcanoes which can potentially aid in future search-and-rescue missions.

Cosmic rays are high-energy particles originating from outer space, including sources such as the sun, distant galaxies, supernovae, and other celestial bodies. Although we can’t see or feel cosmic rays directly, they constantly bombard the Earth from outer space.

In fact, these particles are so abundant that scientists estimate one cosmic ray hits one square centimeter of the Earth’s surface every minute! Scientists study cosmic rays to learn about the universe and how particles interact at high energies.

Underground navigation maybe possible with cosmic-ray muons, research shows

Superfast, subatomic-sized particles called muons have been used to wirelessly navigate underground for the first time. By using muon-detecting ground stations synchronized with an underground muon-detecting receiver, researchers at the University of Tokyo were able to calculate the receiver’s position in the basement of a six-story building.

As GPS cannot penetrate rock or water, this new technology could be used in future search and rescue efforts, to monitor undersea volcanoes, and guide autonomous vehicles underground and underwater. The findings are published in the journal iScience.

GPS, the , is a well-established navigation tool and offers an extensive list of positive applications, from safer air travel to real-time location mapping. However, it has some limitations. GPS signals are weaker at and can be jammed or spoofed (where a counterfeit signal replaces an authentic one). Signals can also be reflected off surfaces like walls, interfered with by trees, and can’t pass through buildings, rock or water.

Keith Ward — Why is Consciousness so Mysterious?

How can the mindless microscopic particles that compose our brains ‘experience’ the setting sun, the Mozart Requiem, and romantic love? How can sparks of brain electricity and flows of brain chemicals literally be these felt experiences or be ‘about’ things that have external meaning? How can consciousness be explained?

Free access to Closer To Truth’s library of 5,000 videos: http://bit.ly/376lkKN

Support the show with Closer To Truth merchandise: https://bit.ly/3P2ogje.

Watch more interviews on the mystery of consciousness: https://rb.gy/sxtbb.

Keith Ward is a British philosopher, theologian, pastor and scholar. He is a Fellow of the British Academy and (since 1972) an ordained priest of the Church of England. He was a canon of Christ Church, Oxford until 2003. Comparative theology and the relationship between science and religion are two of his main topics of interest.

Register for free at CTT.com for subscriber-only exclusives: https://bit.ly/3He94Ns.

Quantum interference of light: Anomalous phenomenon found

A counterintuitive facet of the physics of photon interference has been uncovered by three researchers of Université libre de Bruxelles, Belgium. In an article published this month in Nature Photonics, they have proposed a thought experiment that utterly contradicts common knowledge on the so-called bunching property of photons. The observation of this anomalous bunching effect seems to be within reach of today’s photonic technologies and, if achieved, would strongly impact on our understanding of multiparticle quantum interferences.

One of the cornerstones of quantum physics is Niels Bohr’s complementarity principle, which, roughly speaking, states that objects may behave either like particles or like waves. These two mutually exclusive descriptions are well illustrated in the iconic , where particles are impinging on a plate containing two slits. If the trajectory of each particle is not watched, one observes wave-like interference fringes when collecting the particles after going through the slits. But if the trajectories are watched, then the fringes disappear and everything happens as if we were dealing with particle-like balls in a .

As coined by physicist Richard Feynman, the interference fringes originate from the absence of “which-path” information, so that the fringes must necessarily vanish as soon as the experiment allows us to learn that each particle has taken one or the other path through the left or right slit.

For experimental physicists, quantum frustration leads to fundamental discovery

A team of physicists, including University of Massachusetts assistant professor Tigran Sedrakyan, recently announced in the journal Nature that they have discovered a new phase of matter. Called the “chiral Bose-liquid state,” the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Under everyday conditions, matter can be a solid, liquid or gas. But once you venture beyond the everyday—into temperatures approaching absolute zero, things smaller than a fraction of an atom or which have extremely low states of energy—the world looks very different. “You find quantum states of matter way out on these fringes,” says Sedrakyan, “and they are much wilder than the three classical states we encounter in our everyday lives.”

Sedrakyan has spent years exploring these wild quantum states, and he is particularly interested in the possibility of what physicists call “band degeneracy,” “moat bands” or “kinetic frustration” in strongly interacting quantum matter.

/* */