Blog

Archive for the ‘particle physics’ category: Page 195

Jan 12, 2023

‘A perfect little system’: Physicists isolate a pair of atoms to observe p-wave interaction strength for the first time

Posted by in categories: chemistry, particle physics, quantum physics

“Suppose you knew everything there was to know about a water molecule—the chemical formula, the bond angle, etc.,” says Joseph Thywissen, a professor in the Department of Physics and a member of the Centre for Quantum Information & Quantum Control at the University of Toronto.

“You might know everything about the molecule, but still not know there are waves on the ocean, much less how to surf them,” he says. “That’s because when you put a bunch of molecules together, they behave in a way you probably cannot anticipate.”

Thywissen is describing the concept in physics known as emergence: the relationship between the behavior and characteristics of individual particles and large numbers of those particles. He and his collaborators have taken a first step in understanding this transition from “one-to-many” particles by studying not one, not many, but two isolated, interacting particles, in this case potassium atoms.

Jan 12, 2023

For The First Time, Physicists Have Used Antimatter in One of The Most Famous Physics Experiments

Posted by in category: particle physics

For the first time, scientists have performed an iconic physics experiment with a positron — the antimatter counterpart of an electron, one of the fundamental particles.

Not only did they get some truly interesting results, but this achievement could become the first step towards potentially revolutionary discoveries.

The experiment — an antimatter version of the famous double-slit setup — was carried out by researchers from Switzerland and Italy in order to lay the groundwork for a novel line of super-sensitive experiments that might help solve a mystery concerning the Universe’s two domains of matter.

Jan 11, 2023

God, Human, Animal, & Machine | Meghan O’Gieblyn, Feedback Loop ep 54

Posted by in categories: media & arts, particle physics, Ray Kurzweil, singularity, transhumanism

This week our guest is Meghan O’Gieblyn, who has written regularly for entities such as Wired, The New York Times, and The Guardian, in addition to authoring books such as Interior States and her latest book: God, Human, Animal, Machine: Technology, Metaphor, and the Search for Meaning.

Interestingly, much of Meghan’s work pulls on her experience losing her faith in religion while simultaneously being drawn into transhumanism from reading the Age of Spiritual Machines by Singularity’s very own Ray Kurzweil. This exploration of Meghan’s background and her latest book takes us on a journey through the ways in which technology and spirituality have historically woven together, the current ways in which they are conflicting, and the future philosophical questions we’re going to be forced to reconcile. For those of you interested in this subject, I highly recommend going and listening to episode 52 with Micah Redding, which lays a lot of the foundation that we build on her in this episode.

Continue reading “God, Human, Animal, & Machine | Meghan O’Gieblyn, Feedback Loop ep 54” »

Jan 11, 2023

New physics? Ultra-precise measurement in particle physics confounds scientists

Posted by in category: particle physics

The difference between predictions and observations of the magnetic properties of muons suggests a mystery for the Standard Model.

Jan 11, 2023

Scientists find evidence for magnetic reconnection between Ganymede and Jupiter

Posted by in categories: particle physics, space

In June 2021, NASA’s Juno spacecraft flew close to Ganymede, Jupiter’s largest moon, observing evidence of magnetic reconnection. A team led by Southwest Research Institute used Juno data to examine the electron and ion particles and magnetic fields as the magnetic field lines of Jupiter and Ganymede merged, snapped and reoriented, heating and accelerating the charged particles in the region.

“Ganymede is the only moon in our with its own ,” said Juno Principal Investigator Dr. Scott Bolton of SwRI. “The snapping and reconnecting of Ganymede’s magnetic field lines with Jupiter’s creates the magnetospheric fireworks.”

Magnetic reconnection is an explosive physical process that converts stored magnetic energy into kinetic energy and heat. Ganymede’s mini-magnetosphere interacts with Jupiter’s massive magnetosphere, in the magnetopause, the boundary between the two regions.

Jan 11, 2023

Electrons take new shape inside unconventional metal

Posted by in categories: computing, particle physics, quantum physics, space

One of the biggest achievements of quantum physics was recasting our vision of the atom. Out was the early 1900s model of a solar system in miniature, in which electrons looped around a solid nucleus. Instead, quantum physics showed that electrons live a far more interesting life, meandering around the nucleus in clouds that look like tiny balloons. These balloons are known as atomic orbitals, and they come in all sorts of different shapes—perfectly round, two-lobed, clover-leaf-shaped. The number of lobes in the balloon signifies how much the electron spins about the nucleus.

That’s all well and good for individual , but when atoms come together to form something solid—like a chunk of metal, say—the outermost electrons in the atoms can link arms and lose sight of the nucleus from where they came, forming many oversized balloons that span the whole chunk of metal. They stop spinning about their and flow through the metal to carry electrical currents, shedding the diversity of multi-lobed balloons.

Now, researchers at the Quantum Materials Center (QMC) at the University of Maryland (UMD), in collaboration with theorists at the Condensed Matter Theory Center (CMTC) and Joint Quantum Institute (JQI), have produced the first experimental evidence that one metal—and likely others in its class—have electrons that manage to preserve a more interesting, multi-lobed structure as they move around in a solid. The team experimentally studied the shape of these balloons and found not a uniform surface, but a complex structure. This unusual metal is not only fundamentally interesting, but it could also prove useful for building quantum computers that are resistant to noise.

Jan 11, 2023

Explaining Anomalies in Reactor Antineutrinos

Posted by in categories: nuclear energy, particle physics

Several experiments have been set up outside nuclear reactors to record escaping antineutrinos. The data generally agrees with theory, but at certain energies, the antineutrino flux is 6–10% above or below predictions. These so-called reactor antineutrino anomalies have excited the neutrino community, as they could be signatures of a hypothetical sterile neutrino (see Viewpoint: Getting to the Bottom of an Antineutrino Anomaly). But a new analysis by Alain Letourneau from the French Atomic Energy Commission (CEA-Saclay) and colleagues has shown that the discrepancies may come from experimental biases in associated electron measurements [1].

The source of reactor antineutrinos is beta decay, which occurs in a wide variety of nuclei (more than 800 species in a typical fission reactor). To predict the antineutrino flux, researchers have typically used previously recorded data on electrons, which are also produced in the same beta decays. This traditional method takes the observed electron spectra from nuclei, such as uranium-235 and plutonium-239, and converts them into predicted antineutrino spectra. But Letourneau and colleagues have found reason to doubt the electron measurements.

The team calculated antineutrino spectra—as well as the corresponding electron spectra—using a fundamental theory of beta decay. This method works for some nuclei, but not all, so the researchers plugged the gaps using a phenomenological model. They were able to treat all 800-plus reactor beta decays, finding “bumps” in the antineutrino flux that agree with observations. Similar features are predicted for electron spectra, but they don’t show up in the data. The results suggest that an experimental bias in electron observations causes the reactor antineutrino anomalies. To confirm this hypothesis, the researchers call for new precision measurements of the fission electrons.

Jan 11, 2023

The Sounds of Atoms

Posted by in category: particle physics

Transforming the spectral lines of each element into a musical tone provides a fun tool for teasing out patterns in the electronic structures of atoms.

Jan 9, 2023

By Producing Two Entangled Beams of Light, Researchers Have Achieved a Breakthrough in Quantum Physics

Posted by in categories: particle physics, quantum physics

Researchers in Brazil have achieved a quantum breakthrough by succeeding in the creation of a source of illumination that produces two separate entangled beams of light, according to new research.

The achievement was announced by a team of physicists with Brazil’s Laboratory for Coherent Manipulation of Atoms and Light (LMCAL), located at the University of São Paulo’s Physics Institute.

Quantum entanglement is among the most perplexing phenomena observed in modern physics. It involves particles that are linked in such a way that when changes affect the quantum state of one, the other to which it is “entangled” will also be affected. Strangely, such effects even occur over significant distances, a phenomenon first described as “spooky action at a distance” after its discussion in a landmark 1935 paper by Albert Einstein, Boris Podolsky, and Nathan Rosen.

Jan 9, 2023

Two Light-Trapping Techniques Combine for the Best of Both Worlds

Posted by in categories: particle physics, quantum physics, robotics/AI

Taming rays of light and bending them to your will is tricky business. Light travels fast and getting a good chunk of it to stay in one place for a long time requires a lot of skillful coaxing. But the benefits of learning how to hold a moonbeam (or, more likely, a laser beam) in your hand, or on a convenient chip, are enormous. Trapping and controlling light on a chip can enable better lasers, sensors that help self-driving cars “see,” the creation of quantum-entangled pairs of photons that can be used for secure communication, and fundamental studies of the basic interactions between light and atoms—just to name a few.

Of all the moonbeam-holding chip technologies out there, two stand the tallest: the evocatively named whispering gallery mode microrings, which are easy to manufacture and can trap light of many colors very efficiently, and photonic crystals, which are much trickier to make and inject light into but are unrivaled in their ability to confine light of a particular color into a tiny space—resulting in a very large intensity of light for each confined photon.

Recently, a team of researchers at JQI struck upon a clever way to combine whispering gallery modes and photonic crystals in one easily manufacturable device. This hybrid device, which they call a microgear photonic crystal ring, can trap many colors of light while also capturing particular colors in tightly confined, high-intensity bundles. This unique combination of features opens a route to new applications, as well as exciting possibilities for manipulating light in novel ways for basic research.