Toggle light / dark theme

Scientists unveil incredible new material that could fix major issue with data centers: ‘Paving the way for more efficient … technologies’

However, for the first time, two dark matter experiments have detected a neutrino fog, a dense cloud of neutrinos. This discovery is reported by researchers from XENON and PandaX — two scientific experiments that aim to detect dark matter, operating independently in Italy and China respectively.

“This is the first measurement of astrophysical neutrinos with a dark matter experiment,” Fei Gao, a scientist involved in the Xenon experiment, said.

Neutrinos are typically detected through coherent elastic neutrino-nucleus scattering (CEvNS), a process in which neutrinos interact with the entire nucleus rather than just a proton or electron.

CERN to explore interactions between Higgs bosons to unlock new physics

Scientists claim that experimental studies of Higgs boson interactions face a fundamental challenge.


Scientists believe that interactions between Higgs bosons could unlock insights into new physics. Discovered at CERN’s Large Hadron Collider (LHC) in 2012, the elusive Higgs boson particle has been at the centre stage for exploring new possibilities in particle physics.

Scientists claimed that the production of Higgs boson pairs can occur within the Standard Model itself. It is such a rare process here that it has not been possible to observe it in the data collected so far.

Scientists Successfully Warp Time At The Smallest Scale Ever

In a groundbreaking study published in Nature, scientists from JILA—a partnership between the National Institute of Standards and Technology and the University of Colorado Boulder—have managed to measure time dilation at an unprecedentedly small scale. This breakthrough involved detecting time differences between two clocks spaced only a millimeter apart, a distance as small as the width of a pencil tip. The experiment marks a major step forward in the precision of atomic clocks and sheds new light on the effects of gravity on time as outlined in Albert Einstein’s theory of general relativity.

Clocks that Measure the Effects of Gravity at the Millimeter Scale

Time dilation, a phenomenon where time moves more slowly in strong gravitational fields or at high speeds, was first predicted by Einstein’s relativity theory. JILA researchers, led by physicist Jun Ye, used highly precise atomic clocks in this experiment to measure these differences in gravitational time dilation over millimeter distances. By tracking frequency shifts among a sample of 100,000 ultra-cold strontium atoms held in a lattice, the team achieved a remarkable level of control, detecting how the gravitational pull from Earth slightly altered the passage of time over even this small distance.

A Magnetic Gateway Will Open, Linking The Earth And The Sun In Every 8 Minutes

During the time you read this article, something will happen in the sky that many scientists didn’t believe would happen until recently. NASA says that a magnetic doorway will open that will connect the Earth and the Sun, which are 150 million kilometers apart.

Hundreds of thousands of high-energy particles will pass through this gap until it closes, which will happen about the time you reach the bottom of the page.

NASA’s Goddard Space Flight Center’s space physicist David Seebeck calls it a “flux transfer event” or “FTE.” “In 1998, I was sure they didn’t exist, but the proof is now clear.” In fact, David Seebeck proved their existence in 2008 at a plasma conference in Huntsville, Alabama, when he told a group of space physicists from all over the world about his research.

Breaking Atomic Barriers: The Race To Discover the World’s Heaviest Element

Advancements in nuclear physics suggest the possibility of discovering stable, superheavy elements.

Researchers have found an alternative way to produce atoms of the superheavy element livermorium. The new method opens up the possibility of creating another element that could be the heaviest in the world so far: number 120.

The search for new elements is driven by the goal of finding versions that are stable enough to exist beyond a fleeting moment. In nuclear physics, there is a concept known as the “island of stability”—a hypothetical region in the upper reaches of the periodic table where as-yet-undiscovered superheavy elements could potentially last longer than just a few seconds. Scientists are working to explore how far the stability of atomic nuclei can extend.

Polymer’s long spin relaxation time helps researchers gain spintronic insights

Electrons spin even without an electric charge and this motion in condensed matter constitutes spin current, which is attracting a great deal of attention for next-generation technology such as memory devices. An Osaka Metropolitan University-led research group has been able to gain further insight into this important topic in the field of spintronics.

Quantum simulator could help uncover materials for high-performance electronics

Quantum computers hold the promise to emulate complex materials, helping researchers better understand the physical properties that arise from interacting atoms and electrons. This may one day lead to the discovery or design of better semiconductors, insulators, or superconductors that could be used to make ever faster, more powerful, and more energy-efficient electronics.

Scientists Have Exposed Water’s Mysterious Quantum Secrets

For the first time, EPFL researchers have directly observed molecules engaging in hydrogen bonds within liquid water, capturing electronic and nuclear quantum effects that had previously been accessible only through theoretical simulations.

Water is synonymous with life, but the dynamic, multifaceted interaction that brings H2O molecules together – the hydrogen bond – remains mysterious. These hydrogen bonds form as hydrogen and oxygen atoms from neighboring water molecules connect, exchanging electronic charge in the process.

This charge-sharing is a key feature of the three-dimensional ‘H-bond’ network that gives liquid water its unique properties, but quantum phenomena at the heart of such networks have thus far been understood only through theoretical simulations.

A novel state of thorium opens the possibility for a nuclear clock

Why are there atomic clocks but no nuclear clocks? After all, an atom’s nucleus is typically surrounded by many electrons, so in principle it should be less susceptible to outside noise (in the form of light). A nucleus, for high-atomic number atoms, contains more particles than does the element’s electrons. It holds nearly the entire mass of the atom while taking up only about 1/100,000th of the atom’s space. While the first atomic clock was invented in 1949, no nuclear clock has yet been feasible.

/* */