Toggle light / dark theme

Learn more about quantum mechanics from my course on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

Particle physics have conducted a test using data from the Large Hadron Collider at CERN to see if the particles in their collisions play by the rules of quantum physics — whether they have quantum entanglement. Why was this test conducted when previous tests already found that entanglement is real? Is it just nonsense or is it not nonsense? Let’s have a look.

Paper: https://arxiv.org/abs/2311.

🤓 Check out my new quiz app ➜ http://quizwithit.com/

Inside every plant, animal and human cell are billions of molecular machines. They’re made up of proteins, DNA and other molecules, but no single piece works on its own. Only by seeing how they interact together, across millions of types of combinations, can we start to truly understand life’s processes.

In a paper published in Nature, we introduce AlphaFold 3, a revolutionary model that can predict the structure and interactions of all life’s molecules with unprecedented accuracy. For the interactions of proteins with other molecule types we see at least a 50% improvement compared with existing prediction methods, and for some important categories of interaction we have doubled prediction accuracy.

We hope AlphaFold 3 will help transform our understanding of the biological world and drug discovery. Scientists can access the majority of its capabilities, for free, through our newly launched AlphaFold Server, an easy-to-use research tool. To build on AlphaFold 3’s potential for drug design, Isomorphic Labs is already collaborating with pharmaceutical companies to apply it to real-world drug design challenges and, ultimately, develop new life-changing treatments for patients.

Google DeepMind’s newly launched AlphaFold Server is the most accurate tool in the world for predicting how proteins interact with other molecules throughout the cell. It is a free platform that scientists around the world can use for non-commercial research. With just a few clicks, biologists can harness the power of AlphaFold 3 to model structures composed of proteins, DNA, RNA and a selection of ligands, ions and chemical modifications.

AlphaFold Server will help scientists make novel hypotheses to test in the lab, speeding up workflows and enabling further innovation. Our platform gives researchers an accessible way to generate predictions, regardless of their access to computational resources or their expertise in machine learning.

Experimental protein-structure prediction can take about the length of a PhD and cost hundreds of thousands of dollars. Our previous model, AlphaFold 2, has been used to predict hundreds of millions of structures, which would have taken hundreds of millions of researcher-years at the current rate of experimental structural biology.

AlphaFold 3 model is a Google DeepMind and Isomorphic Labs collaboration.

Go to https://galaxylamps.co/sabine, use the code SABINE and get your Galaxy Projector 2.0 with 15% off!

Most astrophysicists believe that 95% of the universe is dark stuff — dark matter and dark energy. We can’t see, feel, or hear it, but it’s supposedly all around us. NASA scientists recently proposed a new experiment to test what is going on with the dark stuff in our vicinity. The want to use four small spacecraft flying around the solar system in a tetrahedron formation to look for variations from Einstein’s theory of gravity. Let’s have a look.

Paper: https://arxiv.org/abs/2404.02096v1

🤓 Check out my new quiz app ➜ http://quizwithit.com/

Check out my course about quantum mechanics on Brilliant! First 30 days are free and 20% off the annual premium subscription when you use our link ➜ https://brilliant.org/sabine.

If you flip a light switch, the light will turn on. A cause and its effect. Simple enough… until quantum gravity come into play. Once you add quantum gravity, lights can turn on and make switches flip. And some physicists think that this could help build better computers. Why does quantum physics make causality so strange? And how can we use quantum gravity to build faster computers? Let’s have a look.

The paper on indefinite causal structures is here: https://arxiv.org/abs/quant-ph/0701019

🤓 Check out my new quiz app ➜ http://quizwithit.com/

Explore courses in mathematics, science, and computer science with Brilliant. First 200 to use our link https://brilliant.org/sabine will get 20% off the annual premium subscription.

Memory storage technology has come a long way from compact disks. Or has it? In a recent paper, scientists report they were able to fit petabytes of memory onto a compact disk using new laser technologies and advanced material design. Is this the future of data storage? Let’s have a look.

🤓 Check out my new quiz app ➜ http://quizwithit.com/
💌 Support me on Donatebox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#science #sciencenews #technews #tech #technology

Nuclear fusion is a great idea, in principle. In principle, it could solve the energy worries of the world beautifully. The problem is that whenever we’ve tried, getting nuclear fusion to work takes up more energy than it creates. But a team from Japan and the United States just got us a bit closer to our dream of clean energy. They recently succeeded in controlling nuclear plasma in a stellarator by creating a virtual twin. What’s a stellarator, what is digital twin and what did they actually do? Let’s have a look.

The new paper is here: https://www.nature.com/articles/s4159

🤓 Check out our new quiz app ➜ http://quizwithit.com/
💌 Support us on Donatebox ➜ https://donorbox.org/swtg.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
👉 Transcript with links to references on Patreon ➜ / sabine.
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
🖼️ On instagram ➜ / sciencewtg.

#sciencenews #science #technews #tech

Potentially good technology if it makes it to market. A new semiconductor would be great!


Researchers at the Georgia Institute for Technology have found a new semiconductor that’s a really good candidate for making computers faster and smaller than ever. Amazingly enough, it works by combining graphene with silicon carbide, to give a material with a sensible band gap that still has a high thermal conductivity.

Correction to what I say at 02:54 — That should have been voltage, not current.

Magnetic random-access memories (MRAMs) are data storage devices that store digital data within nanomagnets, representing it in binary code (i.e., as “0” or “1”). The magnetization of nanomagnets inside these memory devices can be directed upward or downward.

Over the past decade, have introduced techniques that can switch this direction using in-plane electrical currents. These techniques ultimately enabled the creation of a new class of MRAM devices, referred to as spin-orbit torque (SOT)-MRAMs.

While existing techniques to switch magnetization direction of nanomagnets in SOT-MRAMs have proved effective, many only work if are aligned with the direction of the electric current. In a recent paper published in Nature Electronics, researchers at the National University of Singapore demonstrated the field-free switching of the perpendicular magnetic anisotropy (PMA) ferromagnet cobalt iron boron (CoFeB) at ambient conditions.

New Patreon page! https://www.patreon.com/seanmcarroll.

Blog post: https://www.preposterousuniverse.com/podcast/2018/08/13/epis…n-nothing/

It’s fun to be in the exciting, chaotic, youthful days of the podcast, when anything goes and experimentation is the order of the day. So today’s show is something different: a solo effort, featuring just me talking without any guests to cramp my style. This won’t be the usual format, but I suspect it will happen from time to time. Feel free to chime in below on how often you think alternative formats should be part of the mix. The topic today is “Why Is There Something Rather than Nothing?”, or equivalently “Why Does the Universe Exist at All?” Heady stuff, but we’re not going to back away from the challenge.

What I have to say will roughly follow my recent paper on the subject, although in a more chatty and accessible style. It concerns ideas at the intersection of physics, philosophy, and theology, so tune in if you’re into that sort of thing.