Toggle light / dark theme

Watch The Kardashev Scale Type 1: What Would Be Our CIvilization?
https://youtu.be/zHFN8VrLBdc.

A type 1 civilization on the Kardashev scale manages to take advantage of 100% of the energy produced by its planet, control the climate, move continents and even change its planet’s rotation. In this sense, how long does the human race lack to become a type 1 civilization? Are we close to achieving it, or are we still far away?
Ready, let’s start! “Introduction“
The level of technological development of any civilization can be measured mainly by the amount of energy they need. But, it also encompasses the management of that energy and how they use it to develop and grow on their home planet.
Following Kardashev’s definition, a Type I civilization is capable of storing and using all the energy available on its planet; this includes all known electricity generation methods, as well as those that depend on the elements available on the planet, nuclear fusion and fission, geothermal energy, as well as that which they can collect from their star without leaving the planet.
The human race has not yet reached this level of development, but will we ever reach it? And if so, when will we achieve it?
Previously we already made a series of 3 videos in which we address the three types of civilizations that exist according to the Kardashev scale. “Enter here images of the series on the scale of Kardashev.“
But today, we will focus on analyzing why the human race has not yet managed to become a type 1 civilization and how far we need to become one.
The Great Filter.

-
“If You happen to see any content that is yours, and we didn’t give credit in the right manner please let us know at [email protected] and we will correct it immediately”

“Some of our visual content is under an Attribution-ShareAlike license. (https://creativecommons.org/licenses/) in its different versions such as 1.0, 2.0, 30, and 4.0 – permitting commercial sharing with attribution given in each picture accordingly in the video.”

Credits: Ron Miller, Mark A. Garlick / MarkGarlick.com.
Credits: NASA/Shutterstock/Storyblocks/Elon Musk/SpaceX/ESA/ESO/ Flickr.

00:00 Intro.

A fascinating new look at the patents and defense projects in the US Military and its hopefully fusion powered future. (FUSION POWER: Only 20 years away for the last 40 years!! 😉)


Back in 2018, Lockheed Martin filed a patent for something it called a “plasma confinement system” — a device small enough to fit inside the fuselage of an F-16 Fighting Falcon that is capable of managing internal temperatures 10 times hotter than the center of the sun.

This scalable device was designed to play a vital role in containing an approach to power production that some still consider science fiction: nuclear fusion. Now, recent advancements in the field are making fusion power look not just possible, but potentially even feasible. In the coming years, fusion could not only change everything about the way the world fights wars… it could even change the way humanity approaches conflict itself.

And it all might start within the shadowy confines of the Pentagon’s black budget.

📱 Follow Sandboxx News on social.

DOW will install advanced nuclear reactors at one of its Gulf Coast sites to provide low carbon power and process heat for its chemicals production.

Dow signed a letter of intent with reactor developer X-energy, and plans to buy a minority stake in the company. The plan is to deploy X-energy’s Xe-100 high-temperature gas-cooled reactor technology at one of Dow’s Gulf Coast complexes, with operations expected to begin by 2030.

“Advanced small modular nuclear technology is going to be a critical tool for Dow’s path to zero-carbon emissions,” said Dow CEO Jim Fitterling. “This is a great opportunity for Dow to lead our industry in carbon neutral manufacturing by deploying next-generation nuclear energy.”

Protecting People, Society & Environment — Lydie Evrard, Deputy Director General; Head, Department of Nuclear Safety & Security, International Atomic Energy Agency (IAEA)


Lydie Evrard (https://www.iaea.org/about/organizational-structure/departme…d-security) is Deputy Director General and Head of the Department of Nuclear Safety and Security at the International Atomic Energy Agency (IAEA).

Ms. Evrard’s department focuses on the protection of people, society and the environment from the harmful effects of ionizing radiation, whether the cause is an unsafe act or a security breach, and her team aims to provide a strong, sustainable and visible global nuclear safety and security framework. Her department was created in 1996 as a response to the Chernobyl nuclear accident.

Prior to joining the IAEA, Ms. Evrard held the role of Commissioner at the French Nuclear Safety Authority (ASN).

Ms. Evrard started her career in the field of engineering, joining the French Ministry of Energy as an engineer and she has worked extensively in the regulatory field over the last 25 years in positions including as Unit Head at the Industry, Research and the Environment Direction of France’s Ministry of the Environment (Paris Region); Deputy Head of the Paris Region Division of the Nuclear Safety Authority (ASN) and subsequently Head of the Authority’s waste, decommissioning, fuel cycle facilities, research facilities and contaminated soils remediation Department. At the ASN, Ms. Evrard handled both radiation protection and nuclear safety issues. In particular, she led, together with counterparts at the Ministry of Energy, the 2013–2015 national plan for the management of radioactive materials and waste and coordinated the stress tests performed on research and fuel cycle facilities, following the Fukushima Daiichi accident.

PARIS—France is falling behind in its plans to return the country’s fleet of nuclear reactors to full power this winter after a rash of outages, raising fears that one of Europe’s key sources of electricity won’t be ramped up to counter Russia’s squeeze on the continent’s energy supplies.

The nuclear fleet was designed to act as the front line of France’s energy security. Since Moscow cut the flow of natural gas to Europe—plunging the continent into its biggest energy crisis since the 1970s oil shock—France’s vaunted nuclear fleet has been about as effective as the Maginot Line, the French fortifications that did little to stop the German invasion during World War II.

Can this new nuclear fusion generator make unlimited clean electricity?
https://brilliant.org/ElectricFuture first 200 people get 20% off annual premium subscription.
https://youtu.be/sEt0nIBPL24 Deeper dive into Helion’s materials, methods, and fusion approach. (unlisted bonus content)

• Organizations all across the world are racing to achieve a fusion power breakthrough. Many critics say nuclear fusion is impossible, but Helion Energy believes they’ve cracked the code…

If you could design the perfect energy source, it would have an inexhaustible supply of fuel, be environmentally friendly, not take up much space, and have a high degree of safety.

The fuels considered for fusion power have traditionally all been isotopes of hydrogen, but there are better fusion reactions using elements like helium-3. Nuclear Fusion 3.

What is nuclear fusion? Nuclear fusion explained: an experimental form of power generation that harnesses the energy released when two atoms combine.

How does nuclear fusion work? Every atom is composed of a nucleus and one or more electrons. The nucleus is made up of protons, and neutrons. A fusion reactor heats fusion fuels into plasma and fuses light elements into heavier elements.

The new model will replace the country’s Charles de Gaulle ship.

Partially state-owned French shipbuilder Naval Group has released fresh renderings on Twitter of France’s future nuclear-powered aircraft carrier, designed to replace the country’s Charles de Gaulle ship.


A new generation aircraft carrier

The new images of what is presently known as the porte-avions de nouvelle génération (PANG), called a New Generation Aircraft Carrier in English, were showcased around the EuroNaval 2022 conference in Paris on Tuesday.

The new system uses molten salts instead of traditional fuel rods.

The world is rethinking nuclear power plants in the face of climate change.

Your average plant produces 8,000 times more power than fossil fuels and is environmentally friendly. There’s one massive caveat, though, in the form of nuclear disasters, such as the 1986 Chernobyl incident and the 2011 Fukushima disaster.

Sign up for the Morning Brief email newsletter to get weekday updates from The Weather Channel and our meteorologists.

A new report shows there is a significant amount of radioactive contamination inside an elementary school in suburban St. Louis, near where waste was dumped from a World War II nuclear weapons factory.

The U.S. Army Corps of Engineers has been working for years to clean up toxic waste near the St. Louis Lambert International Airport, where byproducts from the weapons manufacturing were dumped near a waterway called Coldwater Creek.