Blog

Archive for the ‘nanotechnology’ category: Page 6

Aug 28, 2024

Soft Gold enables Connections between Nerves and Electronics

Posted by in categories: biotech/medical, nanotechnology, neuroscience

Gold does not readily lend itself to being turned into long, thin threads. But researchers at Linköping University in Sweden have now managed to create gold nanowires and develop soft electrodes that can be connected to the nervous system. The electrodes are soft as nerves, stretchable and electrically conductive, and are projected to last for a long time in the body.

Some people have a “heart of gold,” so why not “nerves of gold”? In the future, it may be possible to use this precious metal in soft interfaces to connect electronics to the nervous system for medical purposes. Such technology could be used to alleviate conditions such as epilepsy, Parkinson’s disease, paralysis or chronic pain. However, creating an interface where electronics can meet the brain or other parts of the nervous system poses special challenges.

“The classical conductors used in electronics are metals, which are very hard and rigid. The mechanical properties of the nervous system are more reminiscent of soft jelly. In order to get an accurate signal transmission, we need to get very close to the nerve fibres in question, but as the body is constantly in motion, achieving close contact between something that is hard and something that is soft and fragile becomes a problem,” says Klas Tybrandt, professor of materials science at the Laboratory of Organic Electronics at Linköping University, who led the research.

Aug 26, 2024

A leap forward in nanotechnology: Growing special micro-crystals for better devices

Posted by in category: nanotechnology

In a paper published in the journal Advanced Materials, Dr. Atikur Rahman’s research group from the Physics department at IISER Pune, India, along with collaborators, report a new way to grow special crystals called CsPbBr3 nanoplatelets.

Aug 26, 2024

Nonsurgical Neural Interfaces Could Significantly Expand Use of Neurotechnology

Posted by in categories: bioengineering, biotech/medical, computing, cyborgs, internet, nanotechnology, neuroscience

Noninvasive braincomputer interfaces could vastly improve brain computer control.


Over the past two decades, the international biomedical research community has demonstrated increasingly sophisticated ways to allow a person’s brain to communicate with a device, allowing breakthroughs aimed at improving quality of life, such as access to computers and the internet, and more recently control of a prosthetic limb. DARPA has been at the forefront of this research.

The state of the art in brain-system communications has employed invasive techniques that allow precise, high-quality connections to specific neurons or groups of neurons. These techniques have helped patients with brain injury and other illnesses. However, these techniques are not appropriate for able-bodied people. DARPA now seeks to achieve high levels of brain-system communications without surgery, in its new program, Next-Generation Nonsurgical Neurotechnology (N3).

Continue reading “Nonsurgical Neural Interfaces Could Significantly Expand Use of Neurotechnology” »

Aug 25, 2024

Chiraltube, rolling 2D materials into chiral nanotubes†

Posted by in categories: materials, nanotechnology

José M. de Albornoz-Caratozzolo and Felipe Cervantes-Sodi

Universidad Iberoamericana, Physics and Mathematics Department, Prol. Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México, Mexico. E-mail: [email protected]; Tel: +52 55 59504275.

Received 5th May 2023, Accepted 30th September 2023.

Aug 25, 2024

Advancing nanoscale imaging capabilities

Posted by in categories: computing, nanotechnology, quantum physics

Dynamic nuclear polarization (DNP) has revolutionized the field of nanoscale nuclear magnetic resonance (NMR), making it possible to study a wider range of materials, biomolecules and complex dynamic processes such as how proteins fold and change shape inside a cell.

A team of researchers at the University of Waterloo are combining pulsed DNP with nanoscale magnetic resonance force microscopy (MRFM) measurements to demonstrate that this process can be implemented on the nanoscale with high efficiency. The effort is overseen by Dr. Raffi Budakian, faculty member of the Institute for Quantum Computing and a professor in the Department of Physics and Astronomy, and his team consisting of Sahand Tabatabaei, Pritam Priyadarshi, Namanish Singh, Pardis Sahafi, and Dr. Daniel Tay.

The research has been published in Science Advances (“Large-Enhancement Nanoscale Dynamic Nuclear Polarization Near a Silicon Nanowire Surface”).

Aug 25, 2024

For first time, DNA nanotechnology offers both data storage and computing functions

Posted by in categories: biotech/medical, chemistry, computing, engineering, nanotechnology

Researchers from North Carolina State University and Johns Hopkins University have demonstrated a technology capable of a suite of data storage and computing functions – repeatedly storing, retrieving, computing, erasing or rewriting data – that uses DNA rather than conventional electronics. Previous DNA data storage and computing technologies could complete some but not all of these tasks.

“In conventional computing technologies, we take for granted that the ways data are stored and the way data are processed are compatible with each other,” says project leader Albert Keung, co-corresponding author of a paper on the work (Nature Nanotechnology, “A Primordial DNA Store and Compute Engine”). “But in reality, data storage and data processing are done in separate parts of the computer, and modern computers are a network of complex technologies,” Keung is an associate professor of chemical and biomolecular engineering and a Goodnight Distinguished Scholar at NC State.

“DNA computing has been grappling with the challenge of how to store, retrieve and compute when the data is being stored in the form of nucleic acids,” Keung says. “For electronic computing, the fact that all of a device’s components are compatible is one reason those technologies are attractive. But, to date, it’s been thought that while DNA data storage may be useful for long-term data storage, it would be difficult or impossible to develop a DNA technology that encompassed the full range of operations found in traditional electronic devices: storing and moving data; the ability to read, erase, rewrite, reload or compute specific data files; and doing all of these things in programmable and repeatable ways.

Aug 25, 2024

Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics

Posted by in categories: computing, nanotechnology

Neuromorphic computing memristors are attractive to construct low-power-consumption electronic textiles. Here, authors report an ultralow-power textile memristor network of Ag/MoS2/HfAlOx/carbon nanotube with reconfigurable characteristics and firing energy consumption of 1.9 fJ/spike.

Aug 25, 2024

Bolometric detection of Josephson radiation

Posted by in categories: computing, nanotechnology

An on-chip nano-bolometer integrated with a Josephson junction quantitatively measures the Josephson radiation up to about 100 GHz frequency. This wide-band, thermal detection scheme of microwave photons provides a sensitive detector of Josephson dynamics beyond the standard conductance measurements.

Aug 24, 2024

Ultra-sensitive photothermal microscopy technique detects single nanoparticles as small as 5 nm

Posted by in categories: biotech/medical, chemistry, nanotechnology

The detection of individual particles and molecules has opened new horizons in analytical chemistry, cellular imaging, nanomaterials, and biomedical diagnostics. Traditional single-molecule detection methods rely heavily on fluorescence techniques, which require labeling of the target molecules.

Aug 24, 2024

Team develops method for control over single-molecule photoswitching

Posted by in categories: chemistry, nanotechnology, particle physics

The new research centers on the use of LSPs to achieve atomic-level control of chemical reactions. A team has successfully extended LSP functionality to semiconductor platforms. By using a plasmon-resonant tip in a low-temperature scanning tunneling microscope, they enabled the reversible lift-up and drop-down of single organic molecules on a silicon surface.

The LSP at the tip induces breaking and forming specific chemical bonds between the molecule and silicon, resulting in the reversible switching. The switching rate can be tuned by the tip position with exceptional precision down to 0.01 nanometer. This precise manipulation allows for reversible changes between two different molecular configurations.

An additional key aspect of this breakthrough is the tunability of the optoelectronic function through molecular modification. The team confirmed that photoswitching is inhibited for another organic molecule, in which only one oxygen atom not bonding to silicon is substituted for a nitrogen atom. This chemical tailoring is essential for tuning the properties of single-molecule optoelectronic devices, enabling the design of components with specific functionalities and paving the way for more efficient and adaptable nano-optoelectronic systems.

Page 6 of 303First345678910Last