Toggle light / dark theme

Imagine a future where your phone, computer or even a tiny wearable device can think and learn like the human brain—processing information faster, smarter and using less energy.

A new approach developed at Flinders University and UNSW Sydney brings this vision closer to reality by electrically “twisting” a single nanoscale ferroelectric domain wall.

The domain walls are almost invisible, extremely tiny (1–10 nm) boundaries that naturally arise or can even be injected or erased inside special insulating crystals called ferroelectrics. The domain walls inside these crystals separate regions with different bound charge orientations.

Nokia’s Transparent 5g Smartphone: In a bold move that could redefine smartphone aesthetics, Nokia is preparing to launch an innovative transparent smartphone in the Indian market. This ambitious device promises to combine cutting-edge camera technology, robust battery life, and revolutionary design elements that could set new standards in the mobile industry. Let’s delve into what makes this upcoming device particularly noteworthy in today’s crowded smartphone landscape.

Revolutionary Design Philosophy

A team of metallurgists and geochemists at Guangzhou Institute of Geochemistry, working with a mechanical engineer from the Chinese Academy of Sciences, has improved their previous electrokinetic mining technique by scaling it up to industrial levels. In their paper published in Nature Sustainability, the group describes the changes they made to their system, and the results of testing they conducted at a mine.

Modern technology is reliant on multiple —they are used in EVs, smartphones and computers, for example. Unfortunately, mining such elements is extremely environmentally unfriendly. Huge machines are used to dig dirt and rock from large mines, where it is mixed with water and a host of toxic chemicals in order to extract the desired elements.

The process produces thousands of metric tons of toxic waste. The team in China has been working for several years to develop a cleaner way to extract the elements. It involves generating an electric field underground that coaxes the desired elements closer together and concentrates them, making for a much easier and cleaner separation process.

“Nowadays we always have our mobile phones or a flashlight, but to see bioluminescence in the forest, it has to be pitch black,” said Rudolf.

They collected some samples of the glowing specimen, originally thinking it was a known bioluminescent species called Mycena haematopus. In their well-lit studio, the artists realized that it was another species called the saffron drop bonnet mushroom (Mycena crocata). While this mushroom is known for its saffron-coloured milk, it had not previously been described as bioluminescent.

[ Related: A simple experiment revealed the complex ‘thoughts’ of fungi. ].

It was easy to miss Dr. Robert Gray’s quick movements, tapping the screen of his smartphone at the beginning and end of patient visits on a recent day.

But Gray said those fast finger taps have changed his life. He was tapping an app that records discussions during his appointments and then uses to find the relevant information, summarize it and zap it, within seconds, into each patient’s electronic medical record.

The technology was meticulously documenting each visit so Gray didn’t have to.

Scientists at EPFL achieved a breakthrough by synchronizing six mechanical oscillators into a collective quantum state, enabling observations of unique phenomena like quantum sideband asymmetry. This advance paves the way for innovations in quantum computing and sensing.

Quantum technologies are revolutionizing our understanding of the universe, and one promising area involves macroscopic mechanical oscillators. These devices, already integral to quartz watches, mobile phones, and telecommunications lasers, could play a transformative role in the quantum realm. At the quantum scale, macroscopic oscillators have the potential to enable ultra-sensitive sensors and advanced components for quantum computing, unlocking groundbreaking innovations across multiple industries.

Achieving control over mechanical oscillators at the quantum level is a critical step toward realizing these future technologies. However, managing them collectively poses significant challenges, as it demands nearly identical units with exceptional precision.

Apple could bring Samsung into its camera sensor supply chain, with a new rumor claiming that it is developing a new 3-layer stacked sensor.

The European market is making USB-C the sole interface for battery charging on mobile and portable gadgets. The EU Parliament approved the USB Type-C mandate in 2022, compelling even reluctant manufacturers to adopt the port for their chargers. By the end of 2024, all mobile phones, tablets, and cameras sold in the EU must feature a USB-C charging port – and that’s just the beginning.