Toggle light / dark theme

With lithium-containing batteries facing constraints on many of the metals they contain, Nina Notman looks at whether its group 1 neighbour sodium can supply the answer.

The lithium-ion battery powers much of our modern lives, a fact reflected in this year’s Nobel prize. It resides in devices ranging from very small wearable electronics, through mobile phones and laptops, to electric vehicles and ‘the world’s biggest battery’ – the huge 100MW/129MWh Tesla battery installed on an Australian wind farm in 2017.

‘Lithium-ion has a massive span of applications,’ explains Jonathan Knott, an energy storage researcher at the University of Wollongong in Australia. ‘It is being used as a hammer to crack every nut and we need to start getting a little bit more sophisticated in the use of the best tool for the job.’

Scanning lasers—from barcode scanners at the supermarket to cameras on newer smartphones—are an indispensable part of our daily lives, relying on lasers and detectors for pinpoint precision.

Distance and using LiDAR—a portmanteau of light and radar—is becoming increasingly common: reflected beams record the surrounding environment, providing crucial data for autonomous cars, agricultural machines, and factory robots.

Current technology bounces the laser beams off of moving mirrors, a mechanical method that results in slower scanning speeds and inaccuracies, not to mention the large physical size and complexity of devices housing a laser and mirrors.

Samsung Chairman Lee Jae-yong knows a thing or two about returning to the public eye in style. His latest comeback happened less than a full day ago, bringing some interesting news about Samsung’s long-term design strategy.

What’s even more interesting, however, is the above photograph of Lee during his Thursday tour of Samsung’s main research and development center in Seoul. As the image shows the executive holding a curious smartphone prototype unlike anything else we have seen from the tech giant to date.

Speculation about the device in question is already running rampant, and the currently most popular theory among Korean media is that we are looking at a smartphone with an expandable display.

Japanese researchers have created a mind-controllable Gundam robot, turning one of the anime’s most exciting technological concepts into reality.

The model, based on the mobile suit Zaku, has been available through Bandai’s Zeonic Technics package since last year, but that version requires manual programming on a smartphone app.

【課題】 来週から休暇に入る受講生は、この機会にミニチュアザクを組み立てて、課題に挑戦をして欲しい 今回の課題はプログラムだ。アクションコードに音声をプログラムした。 簡単に音声は追加出来るぞ。 #ジオニックテクニクス #ZEONICTECHNICS pic.twitter.com/rX5OSisXs1

A team of researchers at Samsung has developed a slim-panel holographic video display that allows for viewing from a variety of angles. In their paper published in the journal Nature Communications, the group describes their new display device and their plans for making it suitable for use with a smartphone.

Despite predictions in science-fiction books and movies over the past several decades, 3D holographic players are still not available to consumers. Existing players are too bulky and display video from limited viewing angles. In this new effort, the researchers at Samsung claim to have overcome these difficulties and built a demo device to prove it.

To build their demo device, which was approximately 25 cm tall, the team at Samsung added a steering-backlight unit with a beam deflector for increasing viewing angles. The demo had a viewing angle of 15 degrees at distances up to one meter. The beam deflector was made by sandwiching liquid crystals between sheets of glass. The end result was a device that could bend the light that came through it very much like a prism. Testing showed the beam deflector combined with a tilting mechanism increased viewing angles by 30 times compared to conventional designs. The new design also allows for a slim form at just 1 cm thick. It also has a light modulator, geometric lens and a holographic video processor capable of carrying out 140 billion operations per second. The researchers used a new algorithm that uses lookup tables rather than math operations to process the video data. The demo device was capable of displaying 4K resolution holographic video running at 30 frames per second.

Scientists have successfully teleported a three-dimensional quantum state. The international effort between Chinese and Austrian scientists could be crucial for the future of quantum computers.

The researchers, from Austrian Academy of Sciences, the University of Vienna, and University of Science and Technology of China, were able to teleport the quantum state of one photon to another distant state. The three-dimensional transportation is a huge leap forward. Previously, only two-dimensional quantum teleportation of qubits has been possible. By entering a third dimension, the scientists were able to transport a more advanced unit of quantum information known as a “qutrit.”

Quantum computing is different than what’s known as classical computing, which is what powers phones and laptops. These traditional devices store information in bits, which are represented with a binary 0 or 1. A good metaphor is to imagine a circle, where each 0 and 1 are on opposite points. In Quantum computing, which deals with atomic and subatomic particles, qubits can exist at both of those points as well as anywhere else in the circle.

This article was published as a part of the Data Science Blogathon.

Introduction

Computer Vision is evolving from the emerging stage and the result is incredibly useful in various applications. It is in our mobile phone cameras which are able to recognize faces. It is available in self-driving cars to recognize traffic signals, signs, and pedestrians. Also, it is in industrial robots to monitor problems and navigating around co-workers.

SUBSCRIBE for the OUTDOOR TEST ► http://goo.gl/MU4hNA
Music credits below:

Become a Hacksmith member get exclusive perks! ► https://www.youtube.com/channel/UCjgpFI5dU-D1-kh9H1muoxQ/join
►Early video access
►Project design files (solidworks)
►Merch Discounts
►Colaborate with us on our videos

SOCIAL
Website ► http://www.hacksmith.tech
Facebook ► http://www.facebook.com/thehacksmith
Instagram ► http://www.instagram.com/thehacksmith
Twitter ► http://twitter.com/thehacksmith
Patreon ► http://www.patreon.com/thehacksmith
Discord ► https://discordapp.com/invite/thehacksmith
Merch ► https://www.hacksmith.store

SOFTWARE: