Blog

Archive for the ‘materials’ category: Page 54

Jan 5, 2024

LK99 returns: China echoes earlier claim of room temp superconductors

Posted by in category: materials

Researchers claim they have achieved the unachievable – the discovery of a near-room-temperature superconductor.


There’s a new group of scientists who claim to have discovered a near-room-temperature superconductor, a claim that garnered much social media and tech nerds’ attention back in August 2023.

Jan 5, 2024

High‐Strength Amorphous Silicon Carbide for Nanomechanics

Posted by in category: materials

Advanced Materials, one of the world’s most prestigious journals, is the home of choice for best-in-class materials science for more than 30 years.

Jan 4, 2024

New insights on how light interacts with magnets for better sensors and memory tech

Posted by in categories: materials, particle physics

Professor Amir Capua, head of the Spintronics Lab within the Institute of Applied Physics and Electrical Engineering at Hebrew University of Jerusalem, announced a pivotal breakthrough in the realm of light-magnetism interactions. The team’s unexpected discovery reveals a mechanism wherein an optical laser beam controls the magnetic state in solids, promising tangible applications in various industries.

“This breakthrough marks a in our understanding of the interaction between light and magnetic materials,” stated Professor Capua. “It paves the way for light-controlled, high-speed memory technology, notably Magnetoresistive Random Access Memory (MRAM), and innovative optical sensor development. In fact, this discovery signals a major leap in our understanding of light-magnetism dynamics.”

The research challenges conventional thinking by unraveling the overlooked magnetic aspect of light, which typically receives less attention due to the slower response of magnets compared to the rapid behavior of light radiation.

Jan 3, 2024

Tailoring graphene for electronics beyond silicon

Posted by in categories: electronics, materials

Semiconducting graphene buffer layer grown on silicon carbide.

Jan 3, 2024

Gold-laced gel could help you recover from a major muscle injury

Posted by in categories: materials, nanotechnology

A combination of electrical stimulation and a gold nanoparticle-laced hydrogel could one day help people recover from major muscle injuries.

Dec 31, 2023

Collaborative review unveils the potential of graphene in advancing nitride semiconductor technology

Posted by in categories: chemistry, materials

In a comprehensive review, researchers from Soochow University, Beijing Graphene Institute and Xiamen Silan Advanced Compound Semiconductor Co., Ltd. have collaborated to provide a systematic overview of the progress and potential applications of graphene as a buffer layer for nitride epitaxial growth.

The paper brings together perspectives from academia, , and semiconductor industry professionals to propose solutions for critical issues in semiconductor technology.

Graphene, a two-dimensional material known for its exceptional electrical and , has garnered significant interest for its prospective use in the growth of nitride semiconductors. Despite notable advancements in the (CVD) growth of graphene on various insulating substrates, producing and achieving optimal interface compatibility with Group III-nitride materials remain major challenges in the field.

Dec 31, 2023

Quantum state of matter made with ‘dipolar’ molecules for first time

Posted by in categories: materials, quantum physics

A quantum state of matter comprising molecules with opposite charges at each end has been made for the first time. It could help probe our understanding of the quantum properties of exotic materials.

By Karmela Padavic-Callaghan

Dec 30, 2023

Quantum Leap in Graphite: Attoscience Lights the Way to Superconductivity

Posted by in categories: futurism, materials

Advancements in attosecond soft-X-ray spectroscopy by ICFO researchers have transformed material analysis, particularly in studying light-matter interactions and many-body dynamics, with promising implications for future technological applications.

X-ray absorption spectroscopy is an element-selective and electronic-state sensitive technique that is one of the most widely used analytical techniques to study the composition of materials or substances. Until recently, the method required arduous wavelength scanning and did not provide ultrafast temporal resolution to study electronic dynamics.

Over the last decade, the Attoscience and Ultrafast Optics group at ICFO le, d by ICREA Prof. at ICFO Jens Biegert h, has developed attosecond soft-X-ray absorption spectroscopy into a new analytical tool without the need for scanning and with attosecond temporal resolution.[1,2].

Dec 30, 2023

Harnessing all-dielectric metamaterials to manipulate the polarization state of light

Posted by in categories: biotech/medical, materials

Polarization is one of the fundamental characteristics of electromagnetic waves. It can convey valuable vector information in sensitive measurements and signal transmission, which is a promising technology for various fields such as environmental monitoring, biomedical sciences, and marine exploration. Particularly in the terahertz frequency range, traditional device design methods and structures can only achieve limited performance. Designing efficient modulator devices for high-bandwidth terahertz waves presents a significant challenge.

Researchers led by Prof. Liang Wu at Tianjin University (TJU), China, have been conducting experiments in the field of all-dielectric metamaterials, specifically focusing on utilizing these materials and their to achieve effective broadband polarization conversion in the terahertz frequency range.

They propose a cross-shaped microstructure metamaterial for achieving cross-polarization conversion and linear-to-circular polarization conversion in the terahertz frequency range. The study, titled “An all-silicon design of a high-efficiency broadband transmissive terahertz polarization convertor,” was published in Frontiers of Optoelectronics.

Dec 29, 2023

Developing a futuristic elastomer with ultrahigh strain-induced crystallization

Posted by in categories: engineering, materials

Strain-induced crystallization can strengthen, toughen, and facilitate an elastocaloric effect in elastomers. The resulting crystallinity can be induced by mechanical stretching in common elastomers that are typically below 20%, with a stretchability plateau.

In a new report now published in Science Advances, Chase M. Hartquist and a team of scientists in and at MIT and Duke University in the U.S. used a class of elastomers formed by end-linking to achieve a percentage of strain-induced crystallinity.

The deswollen and end-linked star elastomer abbreviated as DELSE reached an ultrahigh stretchability to scale, beyond the saturated limit of common elastomers, to promote a high elastocaloric effect with an adiabatic temperature change.

Page 54 of 294First5152535455565758Last