Toggle light / dark theme

Molecular crystals with conductivity and magnetism, due to their low impurity concentrations, provide valuable insights into valence electrons. They have helped link charge ordering to superconductivity and to explore quantum spin liquids, where electron spins remain disordered even at extremely low temperatures.

Valence electrons with are also expected to exhibit emergent phenomena, making these essential for studying novel material functionalities.

However, the extent to which valence electrons in molecular crystals contribute to magnetism remains unclear, leaving their quantum properties insufficiently explored. To address this, a research team used light to analyze valence electron arrangements, building on studies of superconductors and quantum spin liquids. The findings are published in Physical Review B.

Stars are born in clouds of gas and dust, making it difficult to observe their early development. But researchers at Chalmers have now succeeded in simulating how a star with the mass of the sun absorbs material from the surrounding disk of material—a process called accretion.

Researchers at Duke University have uncovered the molecular inner workings of a material that could underpin next-generation rechargeable batteries.

Unlike today’s popular lithium-ion batteries that feature a liquid interior, the lithium-based compound is a solid at operational temperatures. But despite its rigid interior structure, charged ions are still able to quickly travel through, making it a “super ionic” material. While researchers have been interested in this compound for some time, they have not known how lithium ions are able to pass through its solid crystalline structure so easily.

The new results answer many standing questions, showing surprising liquid-like behavior at the atomic level. With these insights in hand, as well as the machine learning models used to obtain them, researchers are set to explore similar recipes to solve many of the field’s long-standing challenges.

T Coronae Borealis (T CrB) is a binary star system comprising two stars at very different stages of their life cycles: a red giant and a white dwarf. The red giant, an aging star, is expanding as it nears the end of its life, shedding layers of material into space. Meanwhile, the white dwarf, a stellar remnant that has burned through its fuel, is steadily cooling. This system draws the red giant’s expelled material toward the white dwarf’s surface. When enough accumulates, it triggers a thermonuclear explosion, creating a dramatic outburst of energy and light.

Astronomers know about the “Blaze Star” because it’s had sudden outbursts before. They even know there is usually a decade-long uptick in brightness before the explosion, preceded by a noticeable dip in brightness. That 10-year uptick was reported in a paper in 2023, while the American Association of Variable Star Observers announced T CrB’s pre-eruption dip in April 2024.

Something to bear in mind is that this is a rare astronomical event, but only committed stargazers are likely to get much out of it.

Dipole toroidal modes are a unique set of excitations that are predicted to occur in various physical systems, ranging from atomic nuclei to metamaterials. What characterizes these excitations, or modes, is a toroidal distribution of currents, which results in the formation of vortex-like structures.

A classic example is smoke rings, the characteristic “rings” of smoke produced when puffs of smoke are released into the air through a narrow opening. Physics theories have also predicted the existence of toroidal dipole excitations in atomic nuclei, yet observing these modes has so far proved challenging.

Researchers at Technische Universitat Darmstadt, the Joint Institute for Nuclear Research, and other institutes recently identified candidates for toroidal dipole excitations in the nucleus 58 Ni for the very first time. Their paper, published in Physical Review Letters, opens new possibilities for the experimental observations of these elusive modes in .

An international team of astronomers have investigated a large Galactic supernova remnant designated G278.94+1.35. Results of the study, published Dec. 30 on the pre-print server arXiv, shed more light on the properties of this remnant.

Supernova remnants (SNRs) are diffuse, expanding structures resulting from a supernova explosion. They contain ejected material expanding from the explosion and other interstellar material that has been swept up by the passage of the shockwave from the exploded star.

G278.94+1.35 is a supernova remnant in the Milky Way, discovered in 1988. It has an estimated linear diameter of about 320 light years and its age is assumed to be about 1 million years. The distance to G278.94+1.35 is estimated to be some 8,800 light years.

New radio astronomy observations of a planetary system in the process of forming show that once the first planets form close to the central star, these planets can help shepherd the material to form new planets farther out. In this way each planet helps to form the next, like a line of falling dominos each triggering the next in turn.

To date over 5,000 planetary systems have been identified. More than 1,000 of those systems have been confirmed to host multiple planets. Planets form in clouds of gas and dust known as protoplanetary disks around young stars. But the formation process of multi-planet systems, like our own Solar System, is still poorly understood.

The best example object to study multi-planet system formation is a young star known as PDS 70, located 367 light years away in the direction of the constellation Centaurus. This is the only celestial object where already-formed planets have been confirmed within a protoplanetary disk by optical and infrared observations (First Confirmed Image of Newborn Planet Caught with ESO’s VLT (ESO) ). Previous radio wave observations with the Atacama Large Millimeter/submillimeter Array (ALMA) revealed a ring of dust grains outside the orbits of the two known planets. But those observations could not see into the ring to observe the details.

Lithium metal, a next-generation anode material, has been highlighted for overcoming the performance limitations of commercial batteries. However, issues inherent to lithium metal have caused shortened battery lifespans and increased fire risks. KAIST researchers have achieved a world-class breakthrough by extending the lifespan of lithium metal anodes by approximately 750% using only water.

Their study is published in the journal Advanced Materials.

Professor Il-Doo Kim from KAIST’s Department of Materials Science and Engineering, in collaboration with Professor Jiyoung Lee from Ajou University, successfully stabilized lithium growth and significantly enhanced the lifespan of next-generation lithium metal batteries using eco-friendly hollow nanofibers as protective layers.

Researchers at Cornell University have created a sustainable method to extract gold from electronic waste and use it as a catalyst to transform CO2 into valuable organic materials.

This process provides an eco-friendly alternative to traditional extraction methods, utilizes vast amounts of e-waste, and helps mitigate CO2 emissions, showcasing a promising avenue for environmental conservation and resource recovery.

Innovative Gold Recovery from E-Waste.