Toggle light / dark theme

Graphene is a super strong, two-dimensional material with atom-thick layers. But now, a team of scientists have developed a new material with a similar structure that they’re calling borophene, and it may have graphene beat.

Borophene, a one atom thick sheet of boron, is being introduced by scientists as the next big thing after graphene, another two-dimensional material that made headlines back in 2004. If you aren’t aware, graphene is basically a supermaterial. A single layer of this is about 100 times stronger than steel and it is extremely flexible.

Now, according to research that was published in the journal Nature, borophene’s properties could potentially exceed those of graphene and other, similar materials in the 2D nanomaterial family.

Read more

How does water on the surface of this bizarre material control UV light emission and also its conductivity? (credit: Mohammad A. Islam et al./Nano Letters)

In a remarkable chance landmark discovery, a team of researchers at four universities has discovered a mysterious material that emits ultraviolet light and has insulating, electrical conducting, semiconducting, superconducting, and ferromagnetic properties — all controlled by surface water.

It happened while the researchers were studying a sample of lanthanum aluminate film on a strontinum titanate crystal. The sample mysteriously began to glow, emitting intense levels of ultraviolet light from its interior. After carefully reproducing the experimental conditions, they tracked down the unlikely switch that turns UV light on or off: surface water moisture.

Read more

China wants to be the leading force in manned space exploration, and is exploring sending people to the far side of the moon, Mars, asteroids, and further into deep space.

Becoming the second largest economy in the world and an emerging superpower of its own, China wishes to add deep space exploration into its achievement portfolio. Besides the ongoing moon exploration, its scientists are considering going deeper into the solar system, including Mars, asteroids, and even manned deep-space mission. Liu Jizhong, director of the lunar exploration program and space engineering center, pointed out that China has to be more pioneering, tackling problems such as high speed deep space exploration, energy and power generation, space robot development, and more. He also said that China must cooperate with others as space exploration is an undertaking shared by the entire human species.

China currently intends to explore the far side of the moon, something that has never been done before. It would require a relay satellite for communication and navigation on Lagrange point, where the satellite could orbit within the combined gravitational pull of the Earth-moon system, as said by Zhang Lihua of China Spacesat Co. While China believes that robots are critical to the mission, it also believes that these trips must be manned in order to effectively leverage human decision-making. China also says they are designing footed robots to explore asteroids and better understand their material composition.

Read more

Throughout many remote villages in Ethiopia, water gathering is quite an ardous and dangerous task. With the burden typically falling on matriarchs of the family, the trip to the nearest water source can take hours if not all day. More often than not, that water fetched on these long journeys is commonly contaminated with dangerous elements such as human and animal waste. Additionally, many women have little choice but to bring their young children along, which not only puts them in harm’s way, but also keeps them out of school.

Related: Water-Storing Himalaya Towers Take First Place in 2012 eVolo Skyscraper Competition

The WarkaWater Towers were inspired by the local Warka tree, a large fig tree native to Ethiopia that is commonly used as a community gathering space. The large 30 foot, 88 pound structures are made out of juncus stalks or bamboo woven together to form the tower’s vase-like frame. Inside, a plastic mesh material made of nylon and polypropylene fibers act as micro tunnels for daily condensation. As droplets form, they flow along the mesh pattern into the basin at the base of the towers. By harvesting atmospheric water vapor in this way, it’s estimated that at least 25 gallons of potable water can be sustainably and hygienically collected by the towers every day.

Read more

$4.2 billion per ounce. That’s how much the most expensive material on Earth costs. Priced at £100m per gram, the most expensive material on Earth is made up of “endohedral fullerenes,” a cage of carbon atoms containing nitrogen atoms. It could help us make atomic clocks and accurate autonomous cars.


Current atomic clocks are the size of rooms. This material could allow us to make atomic clocks that fit in your smartphone.

Read more

Governments and leading computing companies such as Microsoft, IBM, and Google are trying to develop what are called quantum computers because using the weirdness of quantum mechanics to represent data should unlock immense data-crunching powers. Computing giants believe quantum computers could make their artificial-intelligence software much more powerful and unlock scientific leaps in areas like materials science. NASA hopes quantum computers could help schedule rocket launches and simulate future missions and spacecraft. “It is a truly disruptive technology that could change how we do everything,” said Deepak Biswas, director of exploration technology at NASA’s Ames Research Center in Mountain View, California.

Biswas spoke at a media briefing at the research center about the agency’s work with Google on a machine they bought in 2013 from Canadian startup D-Wave systems, which is marketed as “the world’s first commercial quantum computer.” The computer is installed at NASA’s Ames Research Center in Mountain View, California, and operates on data using a superconducting chip called a quantum annealer. A quantum annealer is hard-coded with an algorithm suited to what are called “optimization problems,” which are common in machine-learning and artificial-intelligence software.

However, D-Wave’s chips are controversial among quantum physicists. Researchers inside and outside the company have been unable to conclusively prove that the devices can tap into quantum physics to beat out conventional computers.

Read more

At MIT, researchers have developed a stretchable bandage-like device capable of sensing skin temperature, delivering drugs transdermally, and containing electronics that include LED lights for displaying information. The various components of the system are designed to work together, for example the drug dispenser activating only when skin temperature is within a certain range and the LEDs lighting up when the drug reservoirs are running low. While this is only a prototype device, it certainly points toward future flexible devices that stay attached to a person’s skin, or even internally, for extended periods of time while providing health data and taking therapeutic actions in an intelligent way.

The device is based on a stretchable hydrogel matrix that reliably holds onto embedded metallic components linked by pliable wires. The hydrogel was made to have a stiffness similar to human soft tissues so that it blends well with the body when attached to it. When wires, drug reservoirs, delivery channels, and electronic components were built-in, the team tested the stretchiness of the final result showing that it maintains functionality even after repeated stress.

Read more

Flashing some interplanetary gold bling and sipping “space water” might sound far-fetched, but both could soon be reality, thanks to a new US law that legalizes cosmic mining.

In a first, President Barack Obama signed legislation at the end of November that allows commercial extraction of minerals and other materials, including water, from asteroids and the moon.

That could kick off an extraterrestrial gold rush, backed by a private aeronautics industry that is growing quickly and cutting the price of .

Read more

In a breakthrough that could lead to printable organs and an enhanced understanding of human physiology, researchers from Lawrence Livermore National Labs have 3D-printed functional blood vessels that look and function like the real thing.

3D bioprinters are similar to conventional 3D printers, but instead of using inert materials, they use “bio-ink:” basic structural building blocks that are compatible with the human body.

Read more